Homework 1 Spring 2025

These exercises are from our textbook for the course: Graphs & Digraphs, Seventh Edition.

1. A graph *G* has order n = 3k + 3 for some positive integer *k*. Every vertex of *G* has degree k + 1, k + 2 or k + 3. Prove that *G* has at least k + 3 vertices of degree k + 1 or at least k + 1 vertices of degree k + 2 or at least k + 2 vertices of degree k + 3.

Solution: Let *a*, *b* and *c* denote the number of vertices in *G* of degree k + 1, k + 2 and k + 3, respectively. For the sake of contradiction, suppose $a \le k + 2$ and $b \le k$ and $c \le k + 1$. Since a + b + c = 3k + 3, it follows we must have a = k + 2 and b = k and c = k + 1. By the handshaking lemma,

$$\sum_{v \in V(G)} \deg_G(v) = (k+2)(k+1) + k(k+2) + (k+1)(k+3) = 3k^2 + 9k + 5$$

must be an even integer. However, if *k* is even then $3k^2 + 9k$ is also even so then $3k^2 + 9k + 5$ is odd. Or if *k* is odd then $3k^2$ and 9k are both odd so that $3k^2 + 9k$ is even and thus $3k^2 + 9k + 5$ is odd. In any case, we have reached a contradiction.

2. Prove that every bipartite graph of order *n* has at most $\lfloor n^2/4 \rfloor$ edges, and that there is exactly one such graph up to isomorphism.

Solution: Let *G* be a bipartite graph of order *n* with $V(G) = A \sqcup B$, a = |A|, b = |B|. The size of *G* is at most equal to the size of the complete bipartite graph $K_{a,b}$ which, by definition, can be obtained from *G* by adding any remaining edges between *A* and *B*. The size of $K_{a,b}$ is equal to

$$\underbrace{b+b+\ldots+b}_{a \text{ copies}} = ab = a(n-a) \le \frac{[a+(n-a)]^2}{4} = \frac{n^2}{4}, \quad (\star)$$

where the inequality follows from the AM-GM inequality. Since the size of $K_{a,b}$ is an integer this implies $|E(G)| \le |E(K_{a,b})| \le \lfloor n^2/4 \rfloor$. Equality in (\star) only occurs when *n* is even, in which case a = b = n/2 and $G \simeq K_{n/2,n/2}$. Otherwise, if *n* is odd and *G* has size $\lfloor n^2/4 \rfloor$ then, using the fact that $ab = \lfloor n^2/4 \rfloor = \lfloor n/2 \rfloor \lceil n/2 \rceil$, we have $G \simeq K_{a,b} \simeq K_{b,a}$, where the existence of the last isomorphism is evident.

3. Let G_1 and G_2 be self-complementary graphs, and G_2 have even order n. Let G be the graph obtained from G_1 and G_2 by joining each vertex of G_2 whose degree is less than n/2 to every vertex of G_1 . Show that G is self-complementary.

Solution: By assumption, there are graph isomorphisms $\varphi_1: V(G_1) \to V(\overline{G_1})$ and $\varphi_2: V(G_2) \to V(\overline{G_2})$. With *G* formed as prescribed, define a map $\varphi : V(G) \to V(\overline{G})$ by $\varphi(v) = \begin{cases} \varphi_1(v) & v \in V(G_1); \\ \varphi_2(v) & v \in V(G_2). \end{cases}$ We claim that φ is a graph isomorphism, hence we need to show $u \sim v$ in G if and only if $\varphi(u) \sim \varphi(v)$ in *G*. (⇒) Suppose $u \sim v$ for some $u, v \in V(G) = V(G_1) \sqcup V(G_2)$. Case 1: If both $u, v \in V(G_1)$ then we know $\varphi(u) = \varphi_1(u) \sim \varphi_1(v) = \varphi(v)$ in *G* since φ_1 is a graph isomorphism. Case 2: If both $u, v \in V(G_2)$ then we know $\varphi(u) = \varphi_2(u) \sim \varphi_2(v) = \varphi(v)$ in *G* since φ_2 is a graph isomorphism. Case 3: If $u \in V(G_1)$ and $v \in V(G_2)$ then, since $u \sim v$ in G, we know that $\deg_{G_2}(v) < n/2$. Since graph isomorphisms preserve vertex degree, we have that $\deg_{\overline{G_2}}(\varphi(v)) = \deg_{G_2}(v)$ which implies $\deg_{\overline{G_2}}(\varphi(v)) < n/2$. We also know that $\deg_{G_2}(\varphi(v)) + \deg_{\overline{G_2}}(\varphi(v)) = n - 1$. Hence $\deg_{G_2}(\varphi(v)) = n - 1 - \deg_{\overline{G_2}}(\varphi(v)) > \frac{n}{2} - 1,$ which implies $\deg_{G_2}(\varphi(v)) \ge n/2$. In particular, this means $\varphi(u) \neq \varphi(v)$ in *G*, which implies $\varphi(u) \sim \varphi(v)$ in \overline{G} as desired. (\Leftarrow) We prove the contrapositive. Suppose $u \neq v$ in *G*. Then, using the same tools from before we see deg_{*G*₂}($\varphi(v)$) = deg_{*G*₂}(v) $\ge n/2$ which implies $\deg_{G_2}\varphi(v) = n - 1 - \deg_{\overline{G_2}}\varphi(v) \le \frac{n}{2} - 1.$

Hence $\deg_{G_2}(\varphi(v)) < n/2$ which implies $\varphi(u) \sim \varphi(v)$ in *G* and thus we have $\varphi(u) \neq \varphi(v)$ in \overline{G} , as desired.

This establishes that *G* and \overline{G} are isomorphic as graphs, so *G* is self-complentary.

4. Prove that every non-trivial circuit in a graph contains a cycle.

Solution: Let $C : v = v_0, v_1, ..., v_n = v$ be a non-trivial circuit. If the vertices v_i are distinct for all $0 \le i < n$ then *C* is a cycle. Otherwise, consider the set

$$\{(k, \ell) : k < \ell \text{ and } v_k = v_\ell\}$$

and choose a pair (k, ℓ) that minimizes $\ell - k$. This minimality ensures there are no $k < s, t < \ell$ for which $v_s = v_t$ or $v_k = v_t$, hence there are no repeated vertices in the subcircuit $C' = v_k, \ldots v_\ell$, thus C' is a cycle.