Quiz 3 Due: 17 September 2024

Answer the questions in the spaces provided. Show all of your work and circle the answer you would like to have graded for each question.

Name: _____

1. Suppose θ is an acute angle with $\cos(\theta) = \frac{1}{3}$. Use this to compute $\cot(\frac{\pi}{2} - \theta)$.

Solution: First note that, using the cofunction identity, we have

$$\cot(\pi/2 - \theta) = \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}.$$
 (‡)

We already know $cos(\theta)$, so we just need to determine $sin(\theta)$ and then plug these into (‡). To determine $sin(\theta)$ we can use the Pythagorean identity:

$$\cos^2(\theta) + \sin^2(\theta) = 1 \implies (1/3)^2 + \sin^2(\theta) = 1 \implies \sin^2(\theta) = 8/9.$$

So $\sin^2(\theta) = 8/9$ and thus $|\sin(\theta)| = \sqrt{8/9} = \frac{2\sqrt{2}}{3}$. How can we be sure whether

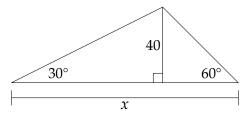
$$\sin(\theta) = \frac{2\sqrt{2}}{3}$$
 or $\sin(\theta) = -\frac{2\sqrt{2}}{3}$??

Since we're told that θ is acute, we know $\sin(\theta)$ is positive. So, overall we have

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan(\theta) = \frac{\frac{2\sqrt{2}}{3}}{\frac{1}{3}} = \frac{2\sqrt{2}}{3} \cdot \frac{3}{1} = \boxed{2\sqrt{2}}.$$

2. Suppose θ is an obtuse angle with $\cot(\theta) = -\frac{12}{5}$. Use this to compute $\sin(\theta)$.

Solution: One of the Pythagorean identities says that $\cot^2(\theta) + 1 = \csc^2(\theta)$. Hence $\csc^2(\theta) = (-12/5)^2 + 1 = \frac{144}{25} + 1 = \frac{169}{25}$. Since $\csc(\theta) = 1/\sin(\theta)$ this implies $\sin^2(\theta) = \frac{25}{169}$ and so $|\sin(\theta)| = 5/13$. Since θ


Since $\csc(\theta) = 1/\sin(\theta)$ this implies $\sin^2(\theta) = \frac{25}{169}$ and so $|\sin(\theta)| = 5/13$. Since θ is obtuse we know $\sin(\theta)$ is positive, therefore we conclude $\overline{\sin(\theta)} = 5/13$.

- 3. You want to install a zipline from the top of the Century Tower to the ground at a 30° angle of depression. The Tower is 157 feet tall.
 - a.) How far away from the base of the tower will you land?
 - b.) How much cable will you need?

(Give exact answers—no decimals.)

Solution: We model the situation with the following triangle: $\begin{array}{c}
& y \\
&$

4. Find the **exact** value of *x* below. (Figure not to scale.)

Solution: Let *a* and *b* be the side lengths of the left and right triangles, respectively, so that x = a+b. Then we have

$$\frac{40}{a} = \tan(30^\circ) = \frac{\sin(30^\circ)}{\cos(30^\circ)} = \frac{1}{\sqrt{3}}$$

which shows $a = 40\sqrt{3}$. Likewise, we find that

$$\frac{40}{b} = \tan(60^\circ) = \sqrt{3}$$
 and so $b = \frac{40}{\sqrt{3}}$.

Therefore $x = 40\sqrt{3} + 40/\sqrt{3}$.