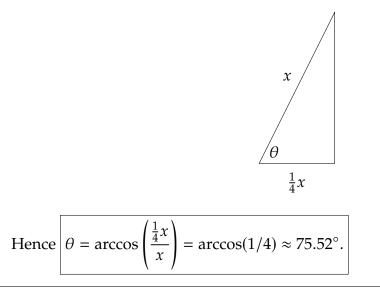
Quiz 9 Due: 5 November 2024

Answer the questions in the spaces provided. Show all of your work and circle the answer you would like to have graded for each question.

Name: _____

 According to OSHA safety regulations, the proper angle for setting up a ladder is to place it 1 foot away from the wall for every 4 feet of ladder length. Find the recommended working angle for a ladder of length *x*. Click here for more details. (This aims to correct an inaccurate claim that I made in class.)

Solution: Since the ladder length is four times the distance from the wall, we can setup a triangle like the one below:



- 2. Find **all** exact solutions to each of the following equations:
 - a.) $\sec^2 x 4 = 0;$

Solution: Observe that $\sec^2(x) - 4 = 0 \iff \sec^2(x) = 4 \iff \cos^2(x) = 1/4 \iff \cos(x) = \pm 1/2.$ Hence the solutions to the given equation are the same as the solutions to $\cos(x) = \pm 1/2$. We can use the unit circle to find that these solutions are $\left\{\frac{\pi}{3} + 2\pi n\right\} \cup \left\{\frac{2\pi}{3} + 2\pi n\right\} \cup \left\{\frac{4\pi}{3} + 2\pi n\right\} \cup \left\{\frac{5\pi}{3} + 2\pi n\right\}.$ b.) $2\sin(\pi\theta) + 1 = 0$.

Solution: Observe that

$$2\sin(\pi\theta) + 1 = 0 \iff \sin(\pi\theta) = -\frac{1}{2},$$

so we know from the unit circle that

$$\pi\theta = \frac{7\pi}{6} + 2\pi n$$
 or $\pi\theta = \frac{11\pi}{6} + 2\pi n$.

Solving for θ , we determine the solutions are

$$\left\{\frac{7}{6}+2n\right\}\cup\left\{\frac{11}{6}+2n\right\}.$$

- 3. Find **all** exact solutions to each of the following equations:
 - a.) $\cos^3(x) = \cos(x);$

Solution: We can move everything to one side and factor to get $\cos(x) - \cos^3(x) = 0 \iff \cos(x)[1 - \cos^2(x)] = 0 \iff \cos(x)\sin^2(x) = 0.$ Hence the solutions to the given equation are the same as the ones for $\cos(x) = 0$ or $\sin^2(x) = 0$. For the former, the unit circle tells us the solutions are $x = \frac{\pi}{2} + \pi n$. For the latter, $\sin^2(x) = 0$ is equivalent to $\sin(x) = 0$, whose solutions are $x = \pi n$. So the overall set of solutions is

$$\{\pi/2+\pi n\}\cup\{\pi n\}.$$

b.) tan(x) = 3sin(x);

Solution: Similar to the last problem, we move everything to one side and factor to get

$$\tan(x) - 3\sin(x) = 0 \iff \sin(x)[\sec(x) - 3] = 0.$$

Hence the solutions to the given equation are those for sin(x) = 0 or sec(x) = 3. We computed the former in the previous problem. For the latter, this is equivalent to cos(x) = 1/3. The solutions to this equation are

 $x = \arccos(1/3) + 2\pi n$ or $x = -\arccos(1/3) + 2\pi n$.

Hence our final answer is

$$\{\pi n\} \cup \{\arccos(1/3) + 2\pi n\} \cup \{-\arccos(1/3) + 2\pi n\}.$$

c.) $2\cos(3\theta) = \sqrt{2};$

Solution: Observe that

$$2\cos(3\theta) = \sqrt{2} \iff \cos(3\theta) = \sqrt{2}/2.$$

This happens when 3θ is coterminal to either $\pi/4$ or $7\pi/4$. Hence our final answer is

$\left\{\frac{\pi}{12}+\frac{2\pi}{3}n\right\}\cup$	$\left\{\frac{7\pi}{12}+\frac{2\pi}{3}n\right\}.$
---	---

4. Find the exact solution(s) between 0 and 2π satisfying $\cos^2(x) = 2\sin(x) + 2$.

Solution: Use the Pythagorean identity to replace $\cos^2(x)$ by $1 - \sin^2(x)$ so that we get the quadratic equation

$$1 - \sin^2(x) = 2\sin(x) + 2.$$

Move everything to one side and factor to get

$$\sin^2(x) + 2\sin(x) + 1 = 0 \iff (\sin(x) + 1)^2 = 0.$$

Hence the solutions to the original equation are the same as the solutions to sin(x) + 1 = 0. This is equivalent to sin(x) = -1. We use the unit circle to find the solutions

$$\left\{\frac{3\pi}{2}+2\pi n\right\}.$$

The only solution between 0 and 2π is $3\pi/2$.