Announcements: Exam 3 (219-26) next Wednesday @ 8:30 PM
in FLINT 0050. We can patholy du a zoom review
for this one J
Office Hours: Halloween 3-5.' There will be
candy and I will be dressed up.
L22 Practice: KMK (From 222 page 5)
L4 R be the region bounded by the lines:

$$x+y=1$$
, $x+y=4$, $x-2j=0$, and $x-2j=-4$.
Using a transformation, evaluate the integral:
 $\int \int 3(x+y) dA$.
R
Set $u = x+y$, then $1 \le u \le 4$
 $set v = x-2j$, then $-4 \le v \le 0$.
Find Jacobian: $\left|\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right|^{-1} = \left|1 - 1\right|^{-1} = (-2-1)^{-1} = -1$
 $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}$

Take also value \Rightarrow $|J| = \frac{1}{3}$ Rewrite integral: $\int_{-y}^{0} \int_{1}^{4} 3u(\frac{1}{3}) du dv$

$$= \int_{-\frac{\pi}{2}}^{\infty} \frac{u^{2}}{2} \Big|_{1}^{\frac{4}{2}} dv = \int_{-\frac{\pi}{2}}^{\infty} \frac{1}{2} dv = \frac{1}{2} \sqrt{5} v \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= 30$$

$$1 23 \quad \text{Practice KKK } \quad \frac{\sqrt{2}}{2} \quad \pm 5$$

$$\text{Hse a darble integral to find the area of the arguinner inside the circle $\mathbb{O}(x-5)^{2} + y^{2} = 25$

$$() \quad \text{Constrt to polar: } \bigcirc: x^{2} - 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

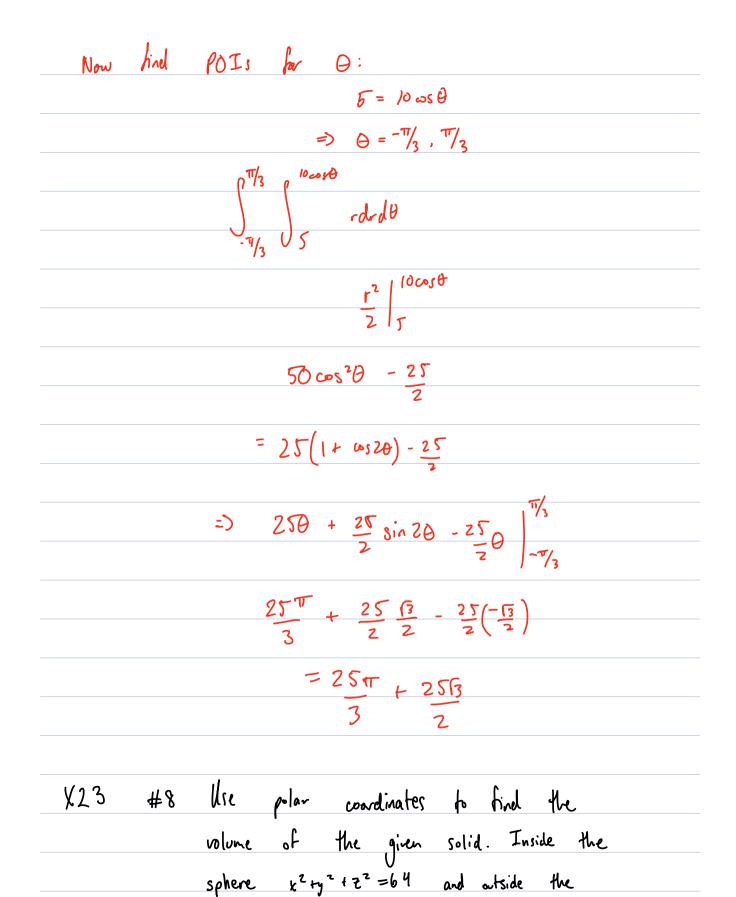
$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

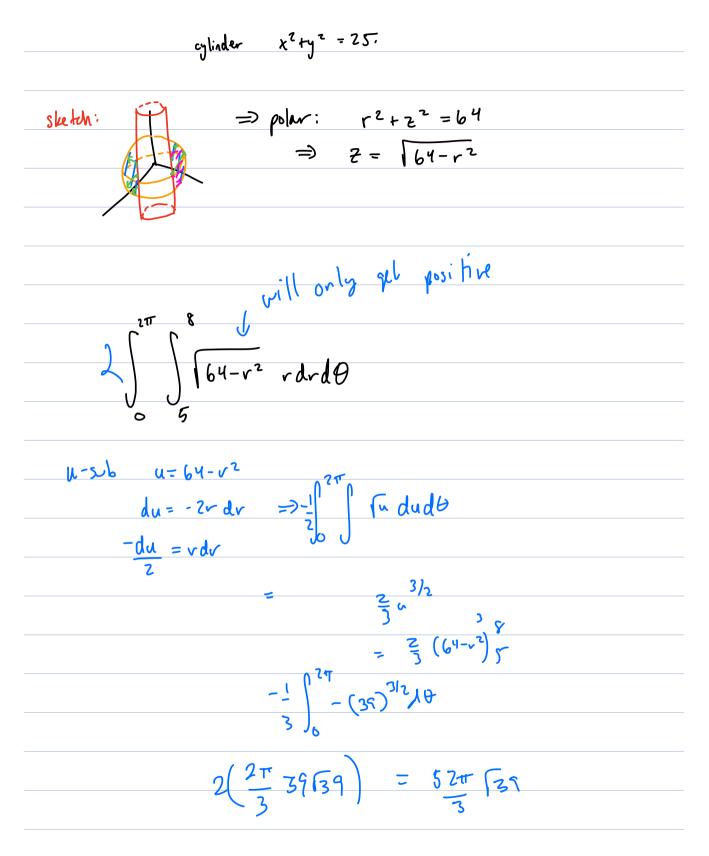
$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$

$$\Rightarrow x^{2} + y^{2} = 10x + 25 + y^{2} = 25$$$$





10. Exam 3 2018

10. Rewrite $\int_0^{16} \int_{\sqrt{x}}^4 \int_0^{4-y} dz \, dy \, dx$ as an equivalent iterated integral in the order $dy \, dx \, dz$.

a.
$$\int_{0}^{16} \int_{0}^{(4-z)^{2}} \int_{\sqrt{x}}^{4-z} dy dx dz$$
(b)
$$\int_{0}^{4} \int_{0}^{(4-z)^{2}} \int_{\sqrt{x}}^{4-z} dy dx dz$$
(c)
$$\int_{0}^{16} \int_{0}^{1-\sqrt{z}} \int_{0}^{4-z} dy dx dz$$
(c)
$$\int_{0}^{4} \int_{0}^{4-z} \int_{0}^{\sqrt{x}} dy dx dz$$
(c)
$$\int_{0}^{4-z} \int_{0}^{\sqrt{x}} dy dx dz$$
(c)
$$\int_{0}^{4-z} \int_{0}^{\sqrt{x}} dy dx dz$$
(c)
$$\int_{1}^{4-z} \int_{0}^{\sqrt{x}} dy dx dz$$
(c)
$$\int_{1}^{4-z} \int_{1}^{\sqrt{x}} dy dx dz$$
(c)
$$\int_{1}^{4-z} \int_{1}^{2} dy dx dz$$
(c)
$$\int_{1}^{2} dy dx dz$$
(c)
$$\int_{1}^{4-z} \int_{1}^{2} dy dx dz$$
(c)
$$\int_{1}^{4-z} \int$$

11. Which of the following represents the area of the region that lies inside $r = \sqrt{3} \sin \theta$ and outside $r = \cos \theta$?

a.
$$\int_{\pi/6}^{\pi} \int_{\cos\theta}^{\sqrt{3}\sin\theta} r \, dr \, d\theta$$

b.
$$\int_{\pi/3}^{\pi} \int_{\cos\theta}^{\sqrt{3}\sin\theta} r \, dr \, d\theta$$

c.
$$\int_{\pi/3}^{\pi} \int_{0}^{\sqrt{3}\sin\theta} r \, dr \, d\theta + \int_{\pi/3}^{\pi/2} \int_{0}^{\cos\theta} r \, dr \, d\theta$$

d.
$$\int_{\pi/3}^{\pi} \int_{0}^{\sqrt{3}\sin\theta} r \, dr \, d\theta - \int_{\pi/3}^{\pi/2} \int_{0}^{\cos\theta} r \, dr \, d\theta$$

e.
$$\int_{\pi/6}^{\pi} \int_{0}^{\sqrt{3}\sin\theta} r \, dr \, d\theta - \int_{\pi/6}^{\pi/2} \int_{0}^{\cos\theta} r \, dr \, d\theta$$

