Krows 1 +5
Find a wit vector that is in the same direction
of the vector u-v, if
$$u = \langle -3, -6, 7 \rangle$$
 and $v \geq \langle -2, 2, 3 \rangle$
shep 1: Find $u-v : \langle -3 - (-2), -6 - 2, 7 - 3 \rangle = \langle -1, -8, 4 \rangle$
shep 2: Find wit vector using $\hat{u} = \frac{u}{11011}$. $\|u\|\| = \sqrt{(-1)^2 + (-8)^2 + 4^2} = \sqrt{81} = 9$
So the unit vector using $\hat{u} = \frac{u}{11011}$. $\|u\|\| = \sqrt{(-1)^2 + (-8)^2 + 4^2} = \sqrt{81} = 9$
So the unit vector is $\frac{1}{7} \langle -1, -8, 4 \rangle$.
Q: what if we had asked for the opposite direction?
A: multiply by (-1) $\Rightarrow \frac{1}{7} \langle -1, 8, -4 \rangle$.
Q: What if I vented this vector to have a magnitude of 3?
A: multiply by 3 $\Rightarrow \frac{3}{7} \langle -1, 8, -4 \rangle$.
X3 #7 Let $u = \langle 4, 2, -4 \rangle$. Decompose $F = \langle 6, 4, 8 \rangle$ into two vectors
Fi and Fi, where Fi is parallel to u and Fi is arthyonol
to u.
Q: What's another way of sugary Fi is attagonal to u?
A: Fi u=0
step 0 (optional): Daw a picture
 $= \frac{Fi}{4}$

step 1: use
$$proj_{1}F = \frac{e}{14}u$$
 + hind the projection of F function of u
onto u_{1} or $F's$ "stade." in the direction of u
This is the verter product to u .

$$\Rightarrow \frac{24+8}{(16+416)^{2}}(4,2,-47) = \frac{32}{26}(4,2,-47) = \frac{8}{4}(4,2,-47)$$
step 2:
Now since $F = F_{1} + F_{2}$ and we have F_{0} , we just take $F - F_{1} = F_{2}$
 $F_{2} = 26, 4, 07 - \frac{8}{9}(24,2,47)$
Reminders: We do not usually hone in an your algebra. Unsimplified
algebraic answers are ukag. Not precale / sale aros, however.
Example : 152 is alway but not $sin(7/s)$
Other FAQs:
 $XI + 49$
 $O: u = <36 cos(45^{-1}), 36 sin 45^{-5})$ & Konos does not accept in

degree form, but radians will V= (20 005 (30), -20 sin (30)> work : u= < 3 6 c-s(17/4), 36 sin(17/4)> v= 220 cos (7/6), -20 sin (1/0) > X2 #2 Which are parallel to <1,2,-37 = u スリマ, 3> × <-1,-2,3> √ yes = (-1) u 2-2,-4,67 / yes = (-2) u $2\frac{1}{2}, 1, -\frac{9}{2}, \sqrt{yes} = \frac{1}{2}(u)$ L1,3,-3> X X3#5 Acute angle 6turn 7x-y=2 6x+y=5 O slope-int form y= 7x-2 y= -6x+5 (2) Make vectors unit $\chi_1, 77$ inc. in χ_1 y inc. γ units イ 1, -67 (3) Use angle formula: $\cos^{-1}\left(\frac{u \cdot v}{|u||v|}\right) = \cos^{-1}\left(\frac{1-42}{150\sqrt{37}}\right)$ $= \omega s^{-1} \left(\frac{-41}{5\sqrt{3}4} \right)$ The "acuteness" here is not clear from content, but it would be on an exam/quiz. $Px: \cos^{-1}\left(\frac{-1}{2}\right) = \frac{2\pi}{3} = 120^{\circ}$ so the

right answer here would be 180-120 = 60