E xam $2:$ Tuesday, Oct 15, @ $6:15$ PM Office Havs on $200M$ this week $5 \cdot 10PM$ in FLINT 0050 Key concepts to know (by lecture): Things to bring: - ID
- pencil for scanton Lecture 10: Domain 4 Range - any remaining brain cells Example see quiz 3 Lecture 11: Limits & Continuity Be able to show a limit exists / does not exist Understand what makes ^a piecewise multivariable function continuous \cdot Example - see quiz 3 \uparrow Kronos II #10 \leftrightarrow 12 Lecture 12: Partial Derivatives Example: see guiz 4 q part of 16^{\pm} Lecture 13 $^{\prime\prime}$: Tangent Planes & Linear Approximations $\star \star \star$ · A lot of guestions can be asked from this lecture Similar also to lecture 16 s See Spring 2018 # 4, 8, 10, 16, FRO #16-c, (x,y) = $f(a,b)$ + $f_x(a,b)$ ($x-a$) + $F_y(a,b)$ ($y-b$) is the linear approx of $f(x,y)$ e (a,b). same as tangent plane formula

Lecture 14: Chain Rule Example see quiz 4 if we have a function z in terms of y and , where y and are in terms of x and y. Then for example,
as are an as an Lecture 15 : Directional Devivatives & Gradients $\kappa \kappa$ A lot of questions can be asked Directional devivative of f @ (a.b) in the direction of a <u>Kunit</u> vector $x = 2w, u_2$ is $D_{u} f(a_{1}b) = f_{x}(a_{1}b) a_{1} + f_{y}(a_{1}b) a_{z}$ can also urite unit vector as Loso, sino? Guadient = $\forall f = \angle f_x, f_y \rangle$ Canadient tells us in what direction \hat{u} Dif(x,y) is $snallest$ & $largest$ (Spring 2018 #1) $\frac{\partial f(\alpha,b)}{\partial t} \leq \frac{\partial f(\alpha,b)}{\partial t} \leq \frac{\partial f(\alpha,b)}{\partial t}$ $^{\prime\prime}$ ascent"

Lecture 16: Gundients & Tangent Planes coart 2) \cdot implicit fations: $f_x(a,b,c)(xa)$ $f_y(a,b,c)(y-b)$ i $f_z(a,b,c)(z-c)$ $hint: y_{ov}$ can always use implicit x

$$
3e^{t}x_{1}x_{2} + 19 : 0p^{\frac{1}{2}}x_{1}x_{2} + 16 : 0p^{\frac{1}{2}}x_{1}x_{2} + 16 : 0p^{\frac{1}{2}}x_{2}x_{2} + 18 + 180
$$
\n
$$
5p^{\frac{1}{2}}x_{1}x_{2}x_{2}x_{2} + 18x_{2}x_{2}x_{2} + 18x_{2}x_{2} +
$$

 S clution:

Review Sheet #11) Find an equation of the fangent plane to the surface $z = x \sin(kry)$ @ $(-1, 1, 0)$ Technically explicit, but I are

a) Find unit vectors that give direction of steepest ascent destrepest descent at (1,2) ^b Find ^a unit vector that points in the direction of no change @ (1,2) Want vector perpendicular to gradient $Pewiw #26$ True a Falx:

26. True or False:

 (1) There exists a function f with continuous second partial derivatives such that $f_x = x + y^2$ and $f_y = x - y^2$. (2) If $f_x(a, b)$ and $f_y(a, b)$ both exist, then f is differentiable at (a, b) . (3) If $f(x, y)$ is differentiable, then the rate of change of f at the point (a, b) in the direction of \vec{w} is $\nabla f(a, b) \cdot \vec{\psi}$. (4) If $f_x(a, b) = 0$ and $f_y(a, b) = 0$, then f must have a local maximum or minimum at (a, b) . (5) If $f(x, y)$ is differentiable and f has a local minimum at (a, b) , then $D_{\vec{u}}f(a,b)=0$ for any unit vector \vec{u} . 1) False fxy = 2y fyx = 2y $2)$ False: f must be continuous @ (a,b) (L 12) 3 False ^w must be unit (a) False: Saddles exist! (5) Trw $\sqrt{f} = 0$ $D_{\alpha}f(a,b) = \nabla f(a,b) - u$ $\left(\gamma\right)$ $-0.4 = 0$ $\left(4\right)$ (5)

What does it near to say I is differentiable? f_x f_y must exist AND f must be continuous

Consider
\n4. Let
$$
f(x) = \begin{cases} \frac{xy}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}
$$

Find $f_x(0,0)$ and $f_y(0,0)$. Is f continuous at $(0,0)$? $f_x(0,0) = 0, f_y(0,0) = 0$, but f is not continuous: along $y = 0$ limit is 0, alo

 XIb #8 Consider the surfaces $x^2 + z^2 = 20$ and $y^2 + z^2 = 25$.
Find symmetric equations of the tangent line the covie of intergetion e (2, 3, 4) $\frac{1}{10}$

2022 \sqrt{a} \sqrt{l} $S_{\rho\acute{e}i\acute{e}j}$ 2018 #9 10:30–4PM $f(x,y) = 2x^2y + 2y^3 + 3y^2$ on disc $x^2 + y^2 \leq 1$ (boundary: $x^2 + y^2 = 1$ f has fw critical points $(0, 0)$ and $(0, -1)$ $w \mid (0,0) = 0$ and $f(0,-1) = 1$ Boundary
 $\nabla f = \lambda \nabla g$ $\nabla f = \langle \frac{4xy}{y}, \frac{2x^2 + 6y^2 + 6y^2}{y^2} \rangle$ γ_q = \angle 2x, 2y7

 $\frac{16}{x}$ 4xy = $2x$ = $\frac{12x}{y}$ = $\frac{12x}{y}$ = $\frac{12x}{y}$ = 0 = $\frac{2x}{y}$ = $\frac{12x}{y}$ = $\frac{12x}{y}$ = $\frac{x=0}{y}$ = $\frac{x=0}{y}$ = $\frac{x=0}{y}$ = $\frac{12x}{y}$ $systen$ $2x^{2} + 6y^{2} + 6y = 2y$ $Solve$ $f f(0, 1) =$ $f(0,-1) = 1$ $f(\frac{6}{3}, \frac{1}{3}) =$ when $x = 0$ $y = \pm 1$ $f(\frac{-6}{3}, -\frac{1}{3}) =$ $2x^{2} + 6y^{2} + 6y = 4y^{2}$ $f(0,0) = 0$

$$
\frac{\sqrt{1+1}e^{i\alpha}}{\sqrt{1+1}e^{i\alpha}
$$

$$
f(-\frac{6}{3}, -\frac{1}{3}) = 2(-\frac{6}{3})^{2}(-\frac{1}{3}) + 2(-\frac{1}{3})^{3} + 3(-\frac{1}{3})^{2} = -\frac{1}{3}
$$
\n
$$
= 1
$$
\n
$$
sin(\theta_{c} \pm \frac{16}{3}, -\frac{1}{3}) \cdot \frac{1}{6} - \frac{1}{3}
$$
\n
$$
f(0,0) = 0
$$
\n
$$
\sqrt{f} = 0
$$
\n
$$
x^{2} + y^{2} \le 9
$$
\n
$$
x^{2} + y^{2} \le 9
$$
\n
$$
x^{2} + y^{2} = 9
$$
\n
$$
x^{2} + y^{2}
$$

Q. f is continuous at $(0,0)$ X $R.$ f is differentiable at $(0,0)$ \therefore \log_{α} $r^{2} = x^{2} + y^{2}$ $r^{2} = (-2) + (2) = 8$ $\frac{-e^{r^{2}}}{r^{2}}$ $f(v, \Theta)$ \equiv \bigcirc $\qquad \qquad \qquad$ $\qquad \qquad$ $\qquad \circ$ $\qquad \circ$ $1 - e^{v^2}$ $=$ $\frac{1-e^{0}}{e^{0}} = 0$ \int $r \rightarrow 0$ \overline{O} \overline{O} $-e^{x^{2}} = -1$ L'H Q is f differentiable a (a,b) if $f_x(a,b)$ ($f_y(a,b)$ exist AND f is r_{unflavor} σ (α, b)

 $Clairut's Tim: IPF is can
\n $f_{xy} = f_{yx}$$

 $fall 2019$ $14.$ If $z=f(x,y)$ has continuous second-order partial devivatives and $x = r^2 + t^2$ and $y = 2r$ find $\frac{\partial^2 z}{\partial t^2}$ $\frac{\partial x}{\partial t} = 2t$ $\frac{\partial y}{\partial t} = 0$ $Note: \frac{\partial z}{\partial t} = (2t) \frac{\partial z}{\partial x}$ $\frac{\partial f}{\partial x} = \frac{\partial x}{\partial x} \cdot \frac{\partial f}{\partial x}$ $\frac{\partial}{\partial x}$ ∂t $\sqrt{}$ $2t$ \mathcal{O} ∂f $= 2\left(\frac{\delta z}{\delta x}\right) + 2t\left|\frac{d}{dt}\frac{\delta z}{\delta x}\right|$

$$
2t\left(\frac{\delta z}{\delta x}\right) = \frac{1}{\delta x} \left(\frac{\delta z}{\delta x}\right)
$$

\n
$$
= 2\left(\frac{\delta z}{\delta x}\right) + (2t)^{\frac{2}{3}} \frac{\delta z}{\delta x} + \frac{\delta z}{\delta x}
$$

\n
$$
= 2\left(\frac{\delta z}{\delta x}\right) + 4t^{2} \frac{\delta^{2} z}{\delta x^{2}}
$$

\n
$$
= 2\left(\frac{\delta z}{\delta x}\right) + 4t^{2} \frac{\delta^{2} z}{\delta x^{2}}
$$

\n
$$
= \frac{\gamma \left(\frac{1}{3} - 4\right)}{\left(\frac{\gamma}{3}\right)^{3} \left(\frac{\gamma}{2}\right)^{3} \left(\frac{\gamma}{2}\right)^{2}} = \frac{\gamma \left(\frac{1}{3} - 4\right)}{\gamma - 2}
$$

\n
$$
= \frac{\gamma \left(\frac{1}{3} - 2\right) \left(\frac{\gamma}{2}\right)}{\gamma \left(\frac{1}{3} - 2\right)}
$$

\n
$$
= \frac{\gamma \left(\frac{1}{3} - 2\right) \left(\frac{\gamma}{2}\right)}{\gamma \left(\frac{1}{3} - 2\right)}
$$

\n
$$
= \frac{\gamma \left(\frac{1}{3} + 2\right) \left(\frac{\gamma}{2}\right)}{\gamma \left(\frac{1}{3} - 2\right)}
$$

\n
$$
= \frac{\gamma \left(\frac{1}{3} + 2\right) \left(\frac{\gamma}{2}\right)}{\gamma \left(\frac{1}{3} - 2\right)}
$$