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ENTROPIC CLT FOR SMOOTHED CONVOLUTIONS

AND ASSOCIATED ENTROPY BOUNDS

SERGEY G. BOBKOV1 AND ARNAUD MARSIGLIETTI2

Abstract. We explore an asymptotic behavior of entropies for sums of independent random
variables that are convolved with a small continuous noise.

1. Introduction

Let (Xn)n≥1 be independent, identically distributed (i.i.d.) random vectors in R
d with an

isotropic distribution, that is, with mean zero and an identity covariance matrix. By the central
limit theorem (CLT), given a random vector X in R

d, independent of all Xn’s, the normalized
sums

Zn =
1√
n
(X +X1 + · · ·+Xn) (1)

are convergent weakly in distribution as n → ∞ to the standard normal random vector Z with
density

ϕ(x) =
1

(2π)d/2
e−|x|2/2, x ∈ R

d. (2)

Suppose that X has a finite second moment and an absolutely continuous distribution, so that
Zn have some densities pn. A natural question of interest is whether or not this property (that
is, the weak CLT) may be strengthened as convergence of entropies

h(Zn) = −
∫

Rd

pn(x) log pn(x) dx

to the entropy of the Gaussian limit Z. The usual entropic CLT corresponds to the i.i.d. case
with X = 0. Then, this CLT is known to hold, if and only if Zn have densities pn with finite
h(Zn) for some or equivalently all n large enough [2] (see also [27], [1], [17], [18], [19], [5], [14]).
What also seems remarkable, the presence of a small non-zero noise X/

√
n in (1) may potentially

enlarge the range of applicability of the entropic CLT. Here is one observation in this direction
in terms of the characteristic function

f(t) = E ei〈t,X〉, t ∈ R
d.

Theorem 1.1. If f is compactly supported, and X1 has a non-lattice distribution, then

h(Zn) → h(Z) as n→ ∞. (3)

2010 Mathematics Subject Classification. Primary 60E, 60F.
Key words and phrases. Central limit theorem, Entropic CLT.
1) School of Mathematics, University of Minnesota, Minneapolis, MN 55455 USA. Research was partially sup-

ported by NSF grant DMS-1855575.
2) Department of Mathematics, University of Florida, Gainesville, FL 32611, USA.

1

http://arxiv.org/abs/1903.03666v2


2 SERGEY G. BOBKOV1 AND ARNAUD MARSIGLIETTI2

This convergence also holds for lattice distributions, if f is supported on the ball |t| ≤ T for some
T > 0 depending on the distribution of X1. One may take T = 1/β3, assuming that the 3-rd
absolute moment

β3 = sup
|θ|=1

E | 〈X1, θ〉 |3

is finite.

The assumption of compactness on the support of the characteristic function of X requires
its density p to be the restriction to R

d of an entire function on C
d of exponential type by

Paley-Wiener theorems (cf. e.g. [29]).
The entropic CLT (3) may equivalently be stated as the convergence

D(Zn||Z) =
∫

Rd

pn(x) log
pn(x)

ϕ(x)
dx → 0 (n→ ∞)

for the Kullback-Leibler distance (also called relative entropy or an informational divergence). It
belongs to the family of so-called strong (informational) distances, which dominate many other
metrics that are used in usual CLT’s about the weak convergence of probability distributions.
As was mentioned to us by one of the referees, one immediate consequence from (3) is the CLT
for non-smoothed normalized sums with respect to the Kantorovich transport distance W2 (cf.
Remark 4.4 for details).

In general, the hypothesis on the support of f in Theorem 1.1 cannot be removed, but may be
weakened by involving more delicate properties related to the location of zeros of the characteristic
function. This may be seen from the following characterization in one important example under
mild regularity assumptions on f .

Theorem 1.2. Suppose that X1 has a uniform distribution on the discrete cube {−1, 1}d, that
is, with independent Bernoulli coordinates. Let the characteristic function f of X satisfy

∫

Rd

|f(t)| dt <∞,

∫

Rd

|f ′(t)|
‖t‖d−1

dt <∞, (4)

where ‖t‖ denotes the distance from the point t to the lattice πZd. Then, the entropic CLT (3)
holds true, if and only if

f(πk) = 0 for all k ∈ Z
d, k 6= 0. (5)

The second moment assumption on X guarantees that f has a bounded continuous derivative
f ′(t) = ∇f(t) with its Euclidean length |f ′(t)|. The assumption of integrability of f in (4) requires
the density of X to be continuous on R

d. In dimension d = 1, the condition (4) is fulfilled, as
long as both f and f ′ are in L1. If d ≥ 2, (4) is more complicated, but is fulfilled, for example,
under decay assumptions such as

|f(t)| ≤ c

((1 + |t1|) . . . (1 + |td|))α
, |f ′(t)| ≤ c

((1 + |t1|) . . . (1 + |td|))α
, (6)

holding for all t = (t1, . . . , td) ∈ R
d with some constants α > 1 and c > 0.

Although an information-theoretic meaning of the property (5) is not clear, it is indeed con-
nected with the entropy functional h(X). Namely, under the conditions (4)-(5), it turns out that
the entropy has to be non-negative. This is emphasized in the next statement, where we drop
the isotropy condition and extend the Bernoulli case to arbitrary integer valued random vectors.
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As before, we assume that X is a continuous random vector in R
d with finite second moment,

which is independent of all Xn’s.

Theorem 1.3. Let (Xn)n≥1 be a sequence of independent, integer valued random vectors, whose
components have variance one. Then

lim sup
n→∞

h(Zn) ≤ h(X) + h(Z).

In particular, if h(Zn) → h(Z) as n→ ∞, then necessarily h(X) ≥ 0.

Actually, the independence assumption may further be weakened to the uncorrelatedness (as
explained in Theorem 5.3 in the end of these notes).

We do not discuss here possible applications of the last conclusion in Theorem 1.3. Let us
however stress that obtaining lower and upper bounds for the differential entropy, under various
hypotheses or for different classes of probability distributions on the Euclidean space R

d, is in
itself an important and self-sufficient direction in information theory, which is motivated by many
problems and is connected with other areas. For example, applications of lower bounds to rate-
distortion theory and channel capacity were put forward in [23] (see also [12], [16], [22]). Let
us also mention Bourgain’s slicing problem in asymptotic geometric analysis, cf. [9]. As a main
conjecture, it states that, for any convex body K in R

d there is a hyperplane H such that the
(d− 1)-dimensional volume of the slice H ∩K is bounded away from zero by a universal positive
constant. It was shown in [6] that the latter may equivalently be formulated as the property that,
if X is a random vector in R

d with an isotropic log-concave distribution then

h(X) ≥ −cd
with some universal constant c > 0. Besides this conjecture, the past few years has seen a growing
interest in the study of entropic inequalities as they shed new lights on fundamental problems in
convex geometry (cf. e.g. [7], [11], [10]). We refer to the survey paper [21] for further details on
the connections between entropic inequalities and geometric and functional inequalities.

The paper is organized as follows. We start in Section 2 with general upper and lower bounds
on the Kullback-Leibler distance

D(X||Z) =
∫

Rd

p(x) log
p(x)

ϕ(x)
dx (7)

from the distribution of X to the standard normal law in terms of the L2-distance

∆ = ‖p− ϕ‖2 =

(∫

Rd

(p(x)− ϕ(x))2 dx

)1/2

. (8)

Throughout, Z denotes a standard normal random vector in R
d, thus with density ϕ as in (2)

and with characteristic function

g(t) = E ei〈t,Z〉 =
∫

Rd

ei〈t,x〉 ϕ(x) dx = e−|t|2/2, t ∈ R
d.

As usual, the Euclidean space R
d is endowed with the canonical inner product 〈·, ·〉 and the

norm | · |. These bounds are applied in Section 3 to express the entropic CLT as convergence
of densities in L2. Theorem 1.1 and Theorem 1.2 (in a somewhat refined form) are proved in
Section 4. Using Proposition 3.1, the proofs employ recent results obtained in [8] on local limit
theorems with respect to the L2 and L∞-norms. Theorem 1.3 is proved in Section 5, where we
also discuss the connection between entropy bounds and the entropic CLT.
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2. General bounds on relative entropy

Throughout this section, let X be a random vector in R
d with density p, and let ∆ be defined

according to (8).

Proposition 2.1. Suppose that E |X|2 = d. If ∆ ≤ 1/e, then

D(X||Z) ≤ cd ∆ log
d+4

4 (1/∆) (9)

with some constant cd > 0 depending on d only. Moreover, if supx p(x) ≤ M for some constant

M ≥ (2π)−d/2, then

D(X||Z) ≥ 1

2M
∆2. (10)

First we collect a few elementary large deviation bounds.

Lemma 2.2. For any T ≥ 1,

(a)
∫
|x|≥T ϕ(x) dx ≤ 2dT d−2 e−T 2/2;

(b)
∫
|x|≥T |x|2 ϕ(x) dx ≤ 2dT d e−T 2/2.

Proof. Clearly, (a) follows from (b). To derive the second bound, write

E |Z|2 1{|Z|≥T} =

∫

|x|≥T
|x|2 ϕ(x) dx =

dωd

(2π)d/2

∫ ∞

T
rd+1 e−r2/2 dr, (11)

where ωd denotes the volume of the unit ball in R
d. Given c > 1, consider the function

u(T ) =

∫ ∞

T
rd+1 e−r2/2 dr − cT d e−T 2/2.

We have u(∞) = 0 and

u′(T ) =
(
(c− 1)T 2 − cd

)
T d−1 e−T 2/2.

Thus, u(T ) is decreasing in some interval 0 ≤ T < T0 and is increasing in T ≥ T0. Therefore,
u(T ) ≤ 0 for all T ≥ 1, if u(1) = 0, that is, for

c =
√
e

∫ ∞

1
rd+1 e−r2/2 dr.

Using (11), we obtain

c =
√
e
(2π)d/2

dωd
E |Z|2 1{|Z|≥1} ≤

√
e
(2π)d/2

ωd
,

so ∫

|x|≥T
|x|2 ϕ(x) dx =

dωd

(2π)d/2

(
u(T ) + cT d e−T 2/2

)
≤

√
e d T d e−T 2/2.

�

To get the upper bound (9), we also need to control the weighted quadratic tails in terms of
the L2-distance ∆.

Lemma 2.3. If E |X|2 = d, then for all T ≥ 1,
∫

|x|≥T
|x|2 p(x) dx ≤ 2T

d+4

2 ∆+ 2dT d e−T 2/2.
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Proof. We have∫

|x|≥T
|x|2 p(x) dx = d−

∫

|x|≤T
|x|2p(x) dx

=

∫

|x|≤T
|x|2 (ϕ(x) − p(x)) dx +

∫

|x|≥T
|x|2 ϕ(x) dx

≤
∫

|x|≤T
|x|2 |p(x)− ϕ(x)| dx +

∫

|x|≥T
|x|2 ϕ(x) dx.

The last integral is bounded by 2dT d e−T 2/2. Also, by the Cauchy inequality,
(∫

|x|≤T
|x|2 |p(x)− ϕ(x)| dx

)2

≤
∫

|x|≤T
|x|4 dx

∫

Rd

(p(x)− ϕ(x))2 dx =
dωd

d+ 4
T d+4∆2,

where ωd is the volume of the unit ball in R
d. Here, dωd

d+4 < 4. �

Lemma 2.4. For all T ≥ 1,

D(X||Z) ≤ 2dT d−2 e−T 2/2 + (2π)d/2
∫

|x|≤T
(p(x)− ϕ(x))2 e|x|

2/2 dx

+
2d− 1

2

∫

|x|≥T
|x|2 p(x) dx+

∫

|x|≥T
p log p dx. (12)

Proof. In definition (8), we split the integration into the two regions. Using the inequality t log t ≤
(t− 1) + (t− 1)2, t ≥ 0, and applying the first bound of Lemma 2.2, we have
∫

|x|≤T

p

ϕ
log

p

ϕ
ϕdx ≤

∫

|x|≤T

( p
ϕ
− 1

)
ϕdx+

∫

|x|≤T

( p
ϕ
− 1

)2
ϕdx

=

∫

|x|≥T
(ϕ− p) dx+

∫

|x|≤T

(p− ϕ)2

ϕ
dx

≤ 2dT d−2 e−T 2/2 −
∫

|x|≥T
p dx+ (2π)d/2

∫

|x|≤T
(p(x)− ϕ(x))2 e|x|

2/2 dx.

For the second region |x| ≥ T , just write
∫

|x|≥T
p log

p

ϕ
dx =

∫

|x|≥T
p log p dx

+
d

2
log(2π)

∫

|x|≥T
p dx+

1

2

∫

|x|≥T
|x|2 p(x) dx.

Combining these relations and noting that log(2π) < 2, we thus get

D(X||Z) ≤ 2dT d−2 e−T 2/2 + (2π)d/2
∫

|x|≤T
(p(x)− ϕ(x))2 e|x|

2/2 dx

+ (d− 1)

∫

|x|≥T
p(x) dx+

1

2

∫

|x|≥T
|x|2 p(x) dx+

∫

|x|≥T
p log p dx.

�

As a consequence, we obtain:
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Lemma 2.5. For all T ≥ 1,

D(X||Z) ≤ (2d+ 1)T d−1 e−T 2/2 +
(
(2π)d/2 + 1

)
eT

2/2 ∆2 + d

∫

|x|≥T
|x|2 p(x) dx.

Proof. We use the notation a+ = max(a, 0). Subtracting ϕ(x) from p(x) and then adding, one
can write

∫

|x|≥T
p log p dx ≤

∫

|x|≥T
p(x) log+(p(x)) dx

≤
∫

|x|≥T
|p(x)− ϕ(x)| log+(p(x)) dx+

∫

|x|≥T
ϕ(x) log+(p(x)) dx.

Next, let us apply Cauchy’s inequality together with the bound (log+(t))2 ≤ 4e−2 t so that to
estimate the last integral from above by

(∫

|x|≥T
ϕ(x)2 dx

)1/2(∫

|x|≥T

(
log+(p(x))

)2
dx

)1/2

≤ 2

e

(∫

|x|≥T
ϕ(x)2 dx

)1/2

.

Here, using the first bound of Lemma 2.2, we have
∫

|x|≥T
ϕ(x)2 dx =

1

(4π)d/2

∫

|y|≥T
√
2
ϕ(y) dy

≤ 2d

(4π)d/2
(T

√
2)d−2 e−T 2

< T d−1e−T 2

.

Therefore,
∫

|x|≥T
p log p dx ≤

∫

|x|≥T
|p(x)− ϕ(x)| log+(p(x)) dx + T

d−1

2 e−T 2/2.

To simplify, the last integrand may be bounded by

1

2
(p(x)− ϕ(x))2 +

1

2

(
log+(p(x))

)2 ≤ 1

2
(p(x)− ϕ(x))2 +

1

2
p(x),

so, ∫

|x|≥T
p log p dx ≤ 1

2
∆2 +

1

2

∫

|x|≥T
p(x) dx+ T

d−1

2 e−T 2/2.

Using this estimate in (12) together with e|x|
2/2 ≤ eT

2/2 for |x| ≤ T , we get

D(X||Z) ≤ 2dT d−1 e−T 2/2 + (2π)d/2 eT
2/2

∫

|x|≤T
(p(x)− ϕ(x))2 dx

+
2d− 1

2

∫

|x|≥T
|x|2 p(x) dx+

1

2
∆2 +

1

2

∫

|x|≥T
p(x) dx+ T

d−1

2 e−T 2/2.

�

Proof of Proposition 2.1. Combining Lemma 2.5 with Lemma 2.3, we immediately get

D(X||Z) ≤ (2d2 + 2d+ 1)T d e−T 2/2 +
(
(2π)d/2 + 1

)
eT

2/2 ∆2 + 2dT
d+4

2 ∆.
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To get (9), it remains to take here

T =

√
2 log(1/∆) +

d

2
log log(1/∆).

For the lower bound (10), let us recall that D(X||Z) = h(Z)− h(X). By Taylor’s expansion, for
all t ≥ 0 and t0 > 0, there is a point t1 between t and t0 such that

t log t = t0 log t0 + (log t0 + 1)(t − t0) +
(t− t0)

2

2t1
.

Inserting t = p(x), t0 = ϕ(x), we obtain a measurable function t1(x) with values between p(x)
and ϕ(x), satisfying

p(x) log p(x) = ϕ(x) log ϕ(x) + (logϕ(x) + 1) (p(x) − ϕ(x)) +
(p(x)− ϕ(x))2

2t1(x)
.

Let us integrate this equality over x and use E |X|2 = d to get

−h(X) = −h(Z) + 1

2

∫

Rd

(p(x)− ϕ(x))2

t1(x)
dx.

Hence

D(X||Z) = 1

2

∫

Rd

(p(x)− ϕ(x))2

t1(x)
dx.

It remains to use the assumptions p(x) ≤M and ϕ(x) ≤M , so that t1(x) ≤M as well. �

3. Topological properties of relative entropy

Applying Proposition 2.1 to a sequence of random vectors, we arrive at necessary and sufficient
conditions for the convergence in the Kullback-Leibler distance D in terms of the L2-distances

∆n = ‖pn − ϕ‖2 =
(∫

Rd

(pn(x)− ϕ(x))2 dx

)1/2

.

More precisely, we have:

Proposition 3.1. Let (Zn)n≥1 be a sequence of random vectors in R
d with densities pn. Suppose

that as n→ ∞
(a) E |Zn|2 → d;
(b) ∆n → 0.

Then D(Zn||Z) → 0 or equivalently h(Zn) → h(Z) as n → ∞. Conversely, if pn are uniformly
bounded, then the conditions (a)− (b) are also necessary for the convergence in D.

Before turning to the proof, let us recall a basic abstract definition of the Kullback-Leibler
distance (i.e., relative entropy). Let X and Y be random elements in a measurable space Ω with
distributions µ and ν, respectively. If µ is absolutely continuous with respect to ν and has density
h = dµ/dν, the relative entropy of µ with respect to ν is defined as

D(X||Y ) = D(µ||ν) =

∫

Ω
h log hdν =

∫
p log

p

q
dλ,

where in the last equality we assume that µ and ν have densities p and q with respect to the
dominating measure λ on Ω, so that h = p/q (which is well-defined λ-almost everywhere). This
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definition does not depend on the choice of λ, and one may always take λ = µ+ ν, for example.
If µ is not absolutely continuous with respect to ν, one puts D(X||Y ) = D(µ||ν) = ∞. For basic
properties of this functional, we refer an interested reader to [15], and here only mention one
well-known relation ∫

Ω
g dµ ≤ D(µ||ν) + log

∫

Ω
eg dν.

It holds for any measurable function g on Ω for which the right-hand side is finite (this relation
easily follows from the elementary inequality xy ≤ x log x− x+ ey, x ≥ 0, y ∈ R).

In the case where Ω = R
d with Lebesgue measure λ, and choosing g(x) = ε |x|2, ε > 0, we have

in particular

εE |X|2 ≤ D(X||Y ) + log E eε |Y |2 .

If Y has a normal distribution, the last expectation is finite for some ε > 0. Therefore, finiteness
of D(X||Y ) forces the random vector X in R

d to have a finite second moment. One can now
introduce an affine invariant functional

D(X) = inf
Y normal

D(X||Y ),

where the infimum is running over all absolutely continuous normal distributions on R
d. Thus,

D(X) represents the Kullback-Leibler distance from the distribution of X to the class of all
non-degenerate Gaussian measures on R

d. It is finite, only if the distribution of X is absolutely
continuous and has a finite second moment, and then this infimum is attained on the normal
distribution with the same mean a = EX and covariance matrix V as for X (cf. e.g. [3], Section
10.7).

Our next step is to quantify the properties (a)− (b) from Proposition 3.1 in terms of D(X||Z),
where Z is a standard normal random vector in R

d. Denote by ϕa,V the density of the normal
law with these parameters, that is, let Y have density

ϕa,V (x) =
1

(2π)d/2
√

det(V )
exp

{
− 1

2

〈
V −1(x− a), x− a

〉}
, x ∈ R

d,

so that D(X) = D(X||Y ). By the definition, if X has density p, we have

D(X||Z) =

∫

Rd

p(x) log
p(x)

ϕ(x)
dx =

∫

Rd

p(x) log
p(x)

ϕa,V (x)
dx

− 1

2
log det(V )− 1

2
E

〈
V −1(X − a),X − a

〉
+

1

2
E |X|2.

Simplifying, we obtain an explicit formula

D(X||Z) = D(X) +
1

2
|a|2 + 1

2

(
log

1

det(V )
+ Tr(V )− d

)

= D(X) +
1

2
|a|2 + 1

2

d∑

i=1

(
log

1

σ2i
+ σ2i − 1

)
, (13)

where σ2i are eigenvalues of the matrix V (σi > 0). Note that all the terms on the right-hand
side are non-negative. This allows us to control the first two moments of X in terms of D(X||Z).
In particular, |a|2 ≤ 2D(X||Z), so that the closeness of X to Z in relative entropy implies the
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closeness of the means. To come to a similar conclusion about the covariance matrices, consider
the non-negative convex function

ψ(t) = log
1

t
+ t− 1, t > 0.

We have ψ(1) = ψ′(1) = 0 and ψ′′(t) = 1
t2
. If |t − 1| ≤ 1, by Taylor’s formula about the point

t0 = 1 with some point t1 between t and 1,

ψ(t) = ψ(1) + ψ′(1)(t − 1) + ψ′′(t1)
(t− 1)2

2
≥ (t− 1)2

8
.

For the values t ≥ 2, we have a linear bound log 1
t + t−1 ≥ c(t−1) with some constant 0 < c < 1.

Namely, write the latter inequality as log t ≤ (1− c)(t− 1), i.e., u(s) = log(1+s)
s ≤ 1− c for s ≥ 1.

As easy to check, the function u(s) is decreasing on the whole positive axis, so u(s) ≤ log 2 in
s ≥ 1. Hence, one may take c = 1− log 2 > 1

8 , and thus ψ(t) ≥ t−1
8 . The two bounds yield

ψ(t) ≥ 1

8
min{|t− 1|, |t− 1|2}, t > 0.

Let us summarize.

Lemma 3.2. Given a random vector X with mean a and covariance matrix V with eigenvalues
σ2i , we have

D(X||Z) ≥ D(X) +
1

2
|a|2 + 1

16

d∑

i=1

min
{
|σ2i − 1|, (σ2i − 1)2

}
.

In particular, putting D = D(X||Z), we have

(a) |a|2 ≤ 2D;

(b) |σ2i − 1| ≤ 4
√
D + 16D for all i ≤ d;

(c) |E |X|2 − d | ≤ 4d
√
D + 16dD.

Here, the closeness of all σ2i to 1 may also be stated as closeness of V to the identity d×d matrix

Id in the (squared) Hilbert-Schmidt norm ‖V − Id‖2HS =
∑d

i=1(σ
2
i − 1)2. These bounds have an

application in the problem where one needs to determine whether or not there is convergence in
relative entropy for a sequence of random vectors.

Corollary 3.3. Given a sequence of random vectors Zn in R
d with means an and covariance

matrices Vn, the property D(Zn||Z) → 0 as n→ ∞ is equivalent to the next three conditions:

D(Zn) → 0; an → 0; Vn → Id.

Proof of Proposition 3.1. First recall that

D(Zn||Z) = −h(Zn) +
d

2
log(2π) +

1

2
E |Zn|2, h(Z) =

d

2
log(2π) +

d

2
.

Hence, if E |Zn|2 → d like in (a), then D(Zn||Z) → 0 ⇔ h(Zn) → h(Z). To show that the
conditions (a)−(b) are sufficient for the convergence inD, denote by fn the characteristic functions
of Zn. By the assumption and applying the Plancherel theorem,

∆n = (2π)−d/2 ‖fn − g‖2 → 0
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as n → ∞. Define the random vectors Z̃n = bnZn, where b2n = d/E |Zn|2 (bn > 0), so that

E |Z̃n|2 = d. They have densities p̃n(x) =
1
bdn
pn(

x
bn
) with characteristic functions

f̃n(t) = E ei〈t,Z̃n〉 = fn(bnt), t ∈ R
d.

Using bn → 1 and applying the Plancherel theorem once more together with the triangle inequality
in L2, we then get

∆̃n = (2π)−d/2 ‖f̃n − g‖2 =
1

(2πbn)d/2
‖fn(t)− g(t/bn)‖2

≤ 1

(2πbn)d/2
‖fn(t)− g(t)‖2 +

1

(2πbn)d/2
‖g(t/bn)− g(t)‖2

=
1

b
d/2
n

∆n +
1

(2πbn)d/2
‖g(t/bn)− g(t)‖2.

Here, the last norm tends to zero, so, ∆̃n → 0. We are in position to apply the upper bound (9)

of Proposition 2.1 to X = Z̃n which yields D(Z̃n||Z) → 0 and thus

D(Zn||Z) = D(Z̃n||Z)− d log bn +
d

2
(b2n − 1) → 0. (14)

Conversely, assuming that D(Zn||Z) → 0 and applying Corollary 3.3, we get the property

(a). Hence, b2n = d/E |Zn|2 → 1, and D(Z̃n||Z) → 0 according to the formula (14). By the
assumption, p̃n are uniformly bounded, that is, p̃n(x) ≤ M with some constant M . We are in

position to apply the lower bound (10) which yields ∆̃n → 0 and therefore

∆n = bd/2n (2π)−d/2 ‖f̃n(t)− g(bnt)‖2 ≤ bd/2n ∆̃n + bd/2n (2π)−d/2 ‖g(t) − g(bnt)‖2 → 0.

�

4. Proof of Theorems 1.1-1.2

From now on, let the random vectors Zn be defined as the normalized sums according to (1).
The proof of Theorem 1.1 is based on the following statement obtained in [8].

Lemma 4.1. ([8, Theorem 1.3]) There exists T > 0 depending on the distribution of X1 with
the following property. If f is supported on the ball |t| ≤ T , then the random vectors Zn have
continuous densities pn such that

‖pn − ϕ‖∞ = sup
x

|pn(x)− ϕ(x)| → 0 as n→ ∞. (15)

If β3 is finite, one may take T = 1/β3. If X1 has a non-lattice distribution, T may be arbitrary.

Recall that, in Theorems 1.1-1.2 we assume that E |X|2 < ∞, which implies E |Zn|2 =
1
n E |X|2 + d→ d as n→ ∞. In addition, the uniform convergence (15) is stronger than

‖pn − ϕ‖2 → 0 as n→ ∞, (16)

since

‖pn − ϕ‖22 =

∫

Rd

(pn(x)− ϕ(x))2 dx

≤ ‖pn − ϕ‖∞
∫

Rd

|pn(x)− ϕ(x)| dx ≤ 2 ‖pn − ϕ‖∞.
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By Proposition 3.1, both properties ensure that D(Zn||Z) → 0, and we obtain Theorem 1.1.
Now, let us turn to the Bernoulli case, that is, when X1 has a uniform distribution on the

discrete cube {−1, 1}d. Theorem 1.2 may slightly be refined in one direction by weakening the
condition (4). As before, ‖t‖ denotes the distance from the point t ∈ R

d to the lattice πZd.

Theorem 4.2. Suppose that the characteristic function of X satisfies

f(πk) = 0 for all k ∈ Z
d, k 6= 0, (17)

together with ∫

Rd

|f(t)| |f ′(t)|
‖t‖d−1

dt <∞. (18)

Then we have the entropic CLT, that is, D(Zn||Z) → 0 as n → ∞. Conversely, if the entropic
CLT holds together with

∫

Rd

|f(t)| dt <∞,

∫

Rd

|f ′(t)|
‖t‖d−1

dt <∞, (19)

then f satisfies (17). In this case the uniform local limit theorem (15) takes place.

The point of the refinement is that (18) is weaker than (19), which is exactly the condition (4)
in Theorem 1.2. In dimension d = 1, (18) is fulfilled whenever f and f ′ are in L2 (by Cauchy’s
inequality), that is, when the density p of the random variable X satisfies

∫ ∞

−∞
(1 + x2) p(x)2 dx <∞

(which holds automatically, if p is bounded). If d ≥ 2, (18) is fulfilled under the decay assumptions
(6) with a weaker parameter constraint α > 1

2 . This is the case, for example, whereX is uniformly

distributed in the (solid) cube [−1, 1]d, while (19) does not hold. In [8], it was shown that the
properties (17)-(18) imply the L2-convergence of densities (16), while (17) together with a stronger
assumption (19) leads to the uniform convergence (15). Hence, we can apply Proposition 3.1 to
conclude that D(Zn||Z) → 0. It was also shown there that the property (17) is fulfilled under the
L2-convergence (16). In order to arrive at a similar conclusion under an apriori weaker entropic
CLT, we involve the assumption (19) and prove here:

Lemma 4.3. Suppose that X1 has a uniform distribution on the discrete cube {−1, 1}d. If the
condition (19) is fulfilled, then Zn have uniformly bounded densities pn.

Having this assertion, we therefore complete the proof of Theorem 4.2 and of Theorem 1.2 by
appealing to Proposition 3.1 once more.

Proof of Lemma 4.3. Put v(t) = cos(t1) . . . cos(td) for t = (t1, . . . , td) ∈ R
d. By the assumption

(19), the characteristic functions

fn(t) = f
( t√

n

)
vn

( t√
n

)

are integrable. Hence, Zn have continuous densities given by the Fourier inversion formula

pn(x) =
1

(2π)d

∫

Rd

e−i〈t,x〉fn(t) dt. (20)
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Let us partition R
d into the cubes Qk = Q+ πk, Q = [−π

2 ,
π
2 ]

d, k ∈ Z
d, so that ‖t‖ = |t− πk| for

t ∈ Qk. Splitting the integration in (20), we can write

pn(x) =
1

(2π)d

∑

k∈Zd

In,k(x), In,k(x) = nd/2
∫

Qk

e−i〈t,x〉√n f(t)vn(t) dt.

Putting wk(t) = f(πk + t) and using the periodicity of the cosine function together with the

bound 0 ≤ cos(u) ≤ e−u2/2 for |u| ≤ π
2 , we have

|In,k(x)| ≤ nd/2Jn,k, Jn,k =

∫

Q
|wk(t)| e−n|t|2/2 dt.

By Taylor’s formula,

|f(πk + t)− f(πk)| ≤ |t|
∫ 1

0
|f ′(πk + ξt)| dξ, t ∈ R

d. (21)

Hence, changing the variable ξt = s, we get

∫

Q
|f(πk + t)− f(πk)| dt ≤

∫ 1

0

∫

Q
|f ′(πk + ξt)| |t| dξ dt

=

∫

Q

[
|f ′(πk + s)| |s|

∫ 1

2

π
‖s‖∞

dξ

ξd+1

]
ds ≤ cd

∫

Q

|f ′(πk + s)|
|s|d−1

ds

with some constant cd depending on d only, where ‖s‖∞ = maxk |sk| for s = (s1, . . . , sd) ∈ R
d.

Hence

πd |wk(0)| = πd |f(πk)| ≤
∫

Qk

|f(t)| dt+ cd

∫

Qk

|f ′(t)|
‖t‖d−1

dt.

The next summation over all k leads to

∑

k∈Zd

|wk(0)| =
∑

k∈Zd

|f(πk)| ≤ 1

πd

∫

Rd

|f(t)| dt+ cd
πd

∫

Rd

|f ′(t)|
‖t‖d−1

dt < ∞, (22)

where we applied the assumption (19). Put

J̃n,k =

∫

Q
(|wk(t)| − |wk(0)|) e−n|t|2/2 dt.

By (21),

|wk(t)| ≤ |wk(0)| + |t|
∫ 1

0
|w′

k(ξt)| dξ.
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Hence, again changing the variable ξt = s, and then ξ =
√
n |s| 1

u , we get

J̃n,k ≤
∫

Q

∫ 1

0
|t| |w′

k(ξt)| e−n|t|2/2 dt dξ

=

∫

Q
|w′

k(s)| |s|
[ ∫ 1

2

π
‖s‖∞

ξ−d−1 e−n|s|2/2ξ2 dξ

]
ds

≤ n−d/2

∫

Q
|w′

k(s)| |s|−(d−1)

[ ∫ ∞

|s|√n
ud−1 e−u2/2 du

]
ds

≤ cd n
−d/2

∫

Q

|w′
k(s)|

|s|d−1
e−n|s|2/2 ds

with some constant cd depending on the dimension, only. Performing summation over all k, we
get

nd/2
∑

k∈Zd

J̃n,k ≤ cd

∫

Rd

|f ′(t)|
‖t‖d−1

e−n ‖t‖2/2 dt ≤ cd

∫

Rd

|f ′(t)|
‖t‖d−1

dt.

Due to (22), with some other d-dependent constants

nd/2
∑

k∈Zd

Jn,k ≤ cd

∫

Rd

|f(t)| dt+ cd

∫

Rd

|f ′(t)|
‖t‖d−1

dt < ∞,

and thus
∑

k∈Zd |In,k(x)| is bounded by a constant which does not depend on x. �

Remark 4.4. To better realize the meaning of Theorem 1.1, let us also comment on the rela-
tionship between the entropic and transport CLT’s. Given two random vectors X and Y in R

d

with distributions µ and ν respectively, the (quadratic) Kantorovich distance is defined as

W2(µ, ν) = W2(X,Y ) = inf
λ

(∫

Rd

∫

Rd

|x− y|2 dλ(x, y)
)1/2

where the infimum is running over all (Borel) probability measures λ on R
d ×R

d with marginals
µ and ν. It represents a metric in the space M2(R

d) of all probability measures on R
d with finite

second moment, which is closely related to the weak topology. More precisely, given a sequence
µn and a “point” ν in M2(R

d), the convergence W2(µn, ν) → 0 holds true as n→ ∞ if and only
if µn are weakly convergent to ν, that is,

∫

Rd

u(x) dµn(x) →
∫

Rd

u(x) dν(x)

for any bounded continuous function u on R
d, and

∫
Rd |x|2 dµn(x) →

∫
Rd |x|2 dν(x) (cf. e.g. [31],

p. 212).
When ν is the standard Gaussian measure on R

d, the relationship of W2 with relative entropy
was emphasized by Talagrand [30] who showed that

W 2
2 (X,Z) ≤ 2D(X||Z)
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holding for any random vector X in R
d with Z a standard normal random vector. Returning to

the setting of Theorem 1.1, define the normalized sums

Z ′
n = Zn − 1√

n
X =

1√
n
(X1 + · · ·+Xn).

By the classical CLT, the distributions µ′n of Z ′
n are weakly convergent to the Gaussian limit ν.

Since also E |Zn|2 = E |Z|2 = d, the above characterization of the convergence in the spaceM2(R
d)

ensures that W2(µ
′
n, ν) → 0, which is a transport CLT. A similar conclusion can also be made on

the basis of Theorem 1.1. Indeed, choose for f a characteristic function supported on a suitable
small ball |t| ≤ T , so that D(Zn||Z) → 0, by (3). Applying the Talagrand transport-entropy
inequality, we get

W 2
2 (Z

′
n, Z) ≤ 2W 2

2 (Zn, Z) +
2

n
E |X|2 ≤ 4D(Zn||Z) +

2

n
E |X|2 → 0.

A similar approach was used in [4] to study the rate of convergence in the one-dimensional
transport CLT under the 4-th moment assumption.

5. Entropy bounds

Let (Xn)n≥1 be a sequence of integer valued random vectors in R
d, and let X be a continuous

random vector in R
d with finite second moment, independent of this sequence. As before, we

define the normalized sums

Zn =
1√
n
(X +X1 + · · ·+Xn).

As is well-known, when the second moment E |U |2 of a continuous random vector U in R
d is

fixed, its entropy is maximized on the normal distribution with the same second moment (cf.
e.g. [13]). In the case of independent and isotropic Xn’s, we have E |Zn|2 = 1

n E |X|2 + d → d
as n → ∞. Hence lim supn→∞ h(Zn) ≤ h(Z), where Z is a standard normal random vector in
R
d. The argument to derive a similar bound lim supn→∞ h(Zn) ≤ h(Z) + h(X) is based on two

elementary lemmas, which involve the discrete Shannon entropy

H(Y ) = −
∑

k

pk log pk.

Here, Y is a discrete random vector taking at most countably many values, say yk, with proba-
bilities pk respectively.

Lemma 5.1. Let X be a continuous random vector, and let Y be a discrete random vector
independent of X, both with values in the Euclidean space R

d. Then

h(X + Y ) ≤ h(X) +H(Y ).

Lemma 5.1 can be derived implicitly from the ideas of [28] about the entropy of mixtures of
discrete and continuous random variables. An explicit statement appears in [32, Lemma 11.2]
(see also [26]). We include a proof for completeness:

Proof. Denote by p the density of X and let pk = P{Y = yk} for some finite or infinite sequence
yk. Since X and Y are independent, X + Y has density

q(z) =
∑

k

pkp(z − yk).
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We use the convention u log(u) = 0 if u = 0. Note that, if p(z − yk) = 0, then

pkp(z − yk) log
∑

i

pip(z − yi) = 0 = pkp(z − yk) log(pkp(z − yk)),

while in the case p(z − yk) > 0, we have

pkp(z − yk) log
∑

i

pip(z − yi) = pkp(z − yk) log
(
pkp(z − yk) +

∑

i 6=k

pip(z − yi)
)

= pkp(z − yk)

[
log(pkp(z − yk)) + log

(
1 +

∑
i 6=k pip(z − yi)

pkp(z − yk)

)]

≥ pkp(z − yk) log(pkp(z − yk)).

Hence, for all z,

pkp(z − yk) log
∑

i

pip(z − yi) ≥ pkp(z − yk) log(pkp(z − yk)).

We may therefore conclude that

h(X + Y ) = −
∫

Rd

q(z) log q(z) dz

= −
∑

k

∫

Rd

pkp(z − yk) log
∑

i

pip(z − yi) dz

≤ −
∑

k

∫

Rd

pkp(z − yk) log(pkp(z − yk)) dz

= −
∑

k

pk

(∫

Rd

p(z − yk) log pk dz +

∫

Rd

p(z − yk) log p(z − yk) dz

)

= h(X) +H(Y ).

�

Let us note that a recent sharpening of Lemma 5.1 appears in [25, Theorem III.1], where it is
shown that

h(X + Y ) ≤ h(X|Y ) + TH(Y ),

where h(X|Y ) is the conditional entropy, reducing to h(X) on independence, and T is the supre-
mum of the total variation of the conditional densities from their “mixture complements”, nec-
essarily T ≤ 1.

The following lemma is standard and has been used in several applications (see [24]):

Lemma 5.2. For any integer valued random variable Y with finite second moment,

H(Y ) ≤ 1

2
log

(
2πe

(
Var(Y ) +

1

12

))
. (23)

The proof of Lemma 5.2, that we include for completeness, also combines both discrete and
differential entropy:
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Proof. Put pk = P{Y = k}, k ∈ Z. Consider a continuous random variable Ỹ with density q
defined to be

q(x) = pk if x ∈ (k − 1
2 , k +

1
2).

In other words,

q(x) =
∑

k

pk1(k− 1

2
,k+ 1

2
)(x), x ∈ R.

Note that

EỸ =
∑

k

pk

∫ k+ 1

2

k− 1

2

x dx =
∑

k

pk
2

((
k +

1

2

)2
−

(
k − 1

2

)2)
=

∑

k

kpk = EY

and similarly

EỸ 2 =
∑

k

pk

∫ k+ 1

2

k− 1

2

x2 dx = EY 2 +
1

12
.

Hence Var(Ỹ ) = Var(Y ) + 1
12 . Also,

h(Ỹ ) = −
∫ ∞

−∞

∑

k

pk1(k− 1

2
,k+ 1

2
)(x) log

∑

j

pj1(j− 1

2
,j+ 1

2
)(x) dx

= −
∑

k

pk

∫ k+ 1

2

k− 1

2

log pk dx = H(Y ).

Now, since Gaussian distributions maximize the differential entropy for a fixed variance, we
conclude that

H(Y ) = h(Ỹ ) ≤ 1

2
log

(
2πeVar(Ỹ )

)
=

1

2
log

(
2πe

(
Var(Y ) +

1

12

))
.

�

We are now prepared to establish Theorem 1.3, in fact under somewhat weaker assumptions.

Theorem 5.3. Given a sequence Xn = (Xn,1, . . . ,Xn,d) of random vectors with values in Z
d,

independent of X, assume that for each k ≤ d, the components Xn,k, n ≥ 1, are uncorrelated
and have variance one. Then,

lim sup
n→∞

h(Zn) ≤ h(X) + h(Z).

Proof. Putting Sn = X1 + · · ·+Xn and applying Lemma 5.1, we get

h(Zn) = h
(X + Sn√

n

)
= h(X + Sn)−

d

2
log n

≤ h(X) +H(Sn)−
d

2
log n.

Note that
Sn = (Sn,1, . . . , Sn,d), Sn,k = X1,k + · · ·+Xn,k (1 ≤ k ≤ d).

By the well-known subadditivity of entropy along components of a random vector (an abstract
property on product spaces which is irrelevant to the independence assumption, cf. e.g. [20]), we
have

H(Sn) ≤ H(Sn,1) + · · ·+H(Sn,d).



ENTROPIC CLT FOR SMOOTHED CONVOLUTIONS AND ASSOCIATED ENTROPY BOUNDS 17

Here, the entropy functional on the left is applied to the d-dimensional random vector, while on
the right-hand side of this inequality we deal with one-dimensional entropies. For each k ≤ d,
the k-th component Sn,k of the random vector Sn represents the sum of n uncorrelated integer
valued random variables with variance one, so that Var(Sn,k) = n. Hence, by (23) applied to
Y = Sn,k, we have

H(Sn,k) ≤ 1

2
log

(
2πe

(
n+

1

12

))
=

1

2
log(2πen) +O(1/n),

and therefore

H(Sn) ≤ d

2
log(2πen) +O(1/n).

We conclude that

lim sup
n→∞

h(Zn) ≤ h(X) +
d

2
log(2πe) = h(X) + h(Z).

�
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