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Further investigations of Rényi entropy power inequalities and an

entropic characterization of s-concave densities

Jiange Li, Arnaud Marsiglietti, James Melbourne

Abstract

We investigate the role of convexity in Rényi entropy power inequalities. After proving that
a general Rényi entropy power inequality in the style of Bobkov-Chistyakov (2015) fails when the
Rényi parameter r ∈ (0, 1), we show that random vectors with s-concave densities do satisfy such
a Rényi entropy power inequality. Along the way, we establish the convergence in the Central
Limit Theorem for Rényi entropies of order r ∈ (0, 1) for log-concave densities and for compactly
supported, spherically symmetric and unimodal densities, complementing a celebrated result of
Barron (1986). Additionally, we give an entropic characterization of the class of s-concave densities,
which extends a classical result of Cover and Zhang (1994).

1 Introduction

Let X be a random vector in Rd. Suppose that X has the density f with respect to the Lebesgue
measure. For r ∈ (0, 1) ∪ (1,∞), the Rényi entropy of order r (or simply, r-Rényi entropy) is defined
as

hr(X) =
1

1− r
log

∫

Rd

f(x)rdx. (1)

For r ∈ {0, 1,∞}, the r-Rényi entropy can be extended continuously such that the RHS of (1) is
log |supp(f)| for r = 0; −

∫

Rd f(x) log f(x)dx for r = 1; and − log ‖f‖∞ for r = ∞. The case r = 1
corresponds to the classical Shannon differential entropy. Here, we denote by |supp(f)| the Lebesgue
measure of the support of f , and ‖f‖∞ represents the essential supremum of f . The r-Rényi entropy
power is defined by

Nr(X) = e2hr(X)/d.

In the following, we drop the subscript when r = 1.
The classical Entropy Power Inequality (henceforth, EPI) of Shannon [39] and Stam [41], states

that the entropy power N(X) is super-additive on the sum of independent random vectors. There has
been recent success in obtaining extensions of the EPI from the Shannon differential entropy to r-Rényi
entropy. In [9, 10], Bobkov and Chistyakov showed that, at the expense of an absolute constant c > 0,
the following Rényi EPI of order r ∈ [1,∞] holds

Nr(X1 + · · ·+Xn) ≥ c

n
∑

i=1

Nr(Xi). (2)

Ram and Sason soon after gave a sharpened constant depending on the number of summands [36].
Madiman, Melbourne, and Xu sharpened constants in the r = ∞ case by identifying extremizers in
[31, 32]. Savaré and Toscani [38] showed that a modified Rényi entropy power was concave along
the solution of a nonlinear heat equation, which generalizes Costa’s concavity of entropy power [19].
Bobkov and Marsiglietti [11] proved the following variant of Rényi EPI

Nr(X + Y )α ≥ Nr(X)α +Nr(Y )α (3)

for r > 1 and some exponent α only depending on r. It is clear that (3) holds for more than two
summands. Improvement of the exponent α was given by Li [27].
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One of our goals is to establish analogues of (2) and (3) when the Rényi parameter r ∈ (0, 1).
Both (2) and (3) can be derived from Young’s convolution inequality in conjunction with the entropic
comparison inequality hr1(X) ≥ hr2(X) for any 0 ≤ r1 ≤ r2. The latter is an immediate consequence of
Jensen’s inequality. When the Rényi parameter r ∈ (0, 1), analogues of (2) and (3) require a converse
of the entropic comparison inequality aforementioned. This technical issue prevents a general Rényi
EPI of order r ∈ (0, 1) for generic random vectors. Our first result shows that a general Rényi EPI of
the form (2) indeed fails for all r ∈ (0, 1).

Theorem 1. For any r ∈ (0, 1) and ε > 0, there exist independent random vectors X1, · · · ,Xn in Rd,
for some d ≥ 1 and n ≥ 2, such that

Nr(X1 + · · ·+Xn) < ε
n
∑

i=1

Nr(Xi). (4)

We have an explicit construction of such random vectors. They are essentially truncations of some
spherically symmetric random vectors with finite covariance matrices and infinite Rényi entropies of
order r ∈ (0, 1). The key point is the convergence along the Central Limit Theorem (henceforth, CLT)
for Rényi entropies of order r ∈ (0, 1); that is, the r-Rényi entropy of their normalized sum converges
to the r-Rényi entropy of a Gaussian. This implies that, after appropriate normalization, the LHS of
(4) is finite, but the RHS of (4) can be as large as possible. The entropic CLT has been studied for
a long time. A celebrated result of Barron [3] shows the convergence in the CLT for Shannon entropy
(see [26] for a multidimensional setting). The recent work of Bobkov and Marsiglietti [12] studies the
convergence in the CLT for Rényi entropy of order r > 1 for real-valued random variables (see also [7]
for convergence in Rényi divergence, which is not equivalent to convergence in Rényi entropy unless
r = 1). In Section 2, we establish the analogue of [12, Theorem 1.1] in higher dimensions and we prove
convergence along the CLT for Rényi entropies of order r ∈ (0, 1) for a large class of densities.

As mentioned above, the reverse entropic comparison inequality prevents Rényi EPIs of order
r ∈ (0, 1) for generic random vectors. However, a large class of random vectors with the so-called
s-concave densities do satisfy such a reverse entropic comparison inequality. Our next results show
that Rényi EPI of order r ∈ (0, 1) holds for such densities. This extends the earlier work of Marsiglietti
and Melbourne [33, 34] for log-concave densities (which corresponds to the s = 0 case).

Let s ∈ [−∞,∞]. A function f : Rd → [0,∞) is called s-concave if the inequality

f((1− λ)x+ λy) ≥ ((1− λ)f(x)s + λf(y)s)1/s (5)

holds for all x, y ∈ Rd such that f(x)f(y) > 0 and λ ∈ (0, 1). For s ∈ {−∞, 0,∞}, the RHS of (5)
is understood in the limiting sense; that is min{f(x), f(y)} for s = −∞, f(x)1−λf(y)λ for s = 0,
and max{f(x), f(y)} for s = ∞. The case s = 0 corresponds to log-concave functions. The study of
measures with s-concave densities was initiated by Borell in the seminal work [13, 14]. One can think
of s-concave densities, in particular log-concave densities, as functional versions of convex sets. There
has been a recent stream of research on a formal parallel relation between functional inequalities of
s-concave densities and geometric inequalities of convex sets.

Theorem 2. For any s ∈ (−1/d, 0) and r ∈ (−sd, 1), there exists c = c(s, r, d, n) such that for all
independent random vectors X1, · · · ,Xn with s-concave densities in Rd, we have

Nr(X1 + · · ·+Xn) ≥ c
n
∑

i=1

Nr(Xi).

In particular, one can take

c = r
1

1−r

(

1 +
1

n|r′|

)1+n|r′|
(

d
∏

k=1

(1 + ks)|r
′|(n−1)(1 + ks

r )
1+|r′|

(1 + ks(1 + 1
n|r′|))

1+n|r′|

)

2
d

,

where r′ = r/(r − 1) is the Hölder conjugate of r.
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Theorem 3. Given s ∈ (−1/d, 0), there exist 0 < r0 < 1 and α = α(s, r, d) such that for r ∈ (r0, 1)
and independent random vectors X and Y in Rd with s-concave densities,

Nr(X + Y )α ≥ Nr(X)α +Nr(Y )α.

In particular, one can take

r0 =

(

1− 2

1 +
√
3

(

1 +
1

sd

)

)−1

α =

(

1 +
log r + (r + 1) log r+1

2r + C(s)

(1− r) log 2

)−1

,

where

C(s) =
2

d

d
∑

k=1

(

log

(

1 +
ks

r

)

+ r log(1 + ks)− (r + 1) log

(

1 +
ks(r + 1)

2r

))

.

Owing to the convexity, random vectors with s-concave densities also satisfy a reverse EPI, which
was first proved by Bobkov and Madiman [8]. This can be seen as the functional lifting of Milman’s
well known reverse Brunn-Minkowski inequality [35]. Motivated by Busemann’s theorem [17] in convex
geometry, Ball, Nayar and Tkocz [2] conjectured that the following reverse EPI

N(X + Y )1/2 ≤ N(X)1/2 +N(Y )1/2 (6)

holds for any symmetric log-concave random vector (X,Y ) ∈ R2. The r-Rényi entropy analogue was
asked in [30], and the r = 2 case was soon verified in [27]. It was also observed in [27] that the r-Rényi
entropy analogue is equivalent to the convexity of p-cross-section body in convex geometry introduced
by Gardner and Giannopoulos [23]. The equivalent linearization of (6) reads as follows. Let (X,Y ) be
a symmetric log-concave random vector in R2 such that h(X) = h(Y ). Then for any λ ∈ [0, 1] we have

h((1 − λ)X + λY ) ≤ h(X).

Cover and Zhang [20] proved the above inequality under the stronger assumption that X and Y have the
same log-concave distribution. They also showed that this provides a characterization of log-concave
distributions on the real line. The following theorem extends Cover and Zhang’s result from log-
concave densities to a more general class of s-concave densities. This gives an entropic characterization
of s-concave densities and implies a reverse Rényi EPI for random vectors with the same s-concave
density.

Theorem 4. Let r > 1 − 1/d. Let f be a probability density function on Rd. For any fixed integer
n ≥ 2, the identity

sup
Xi∼f

hr

(

n
∑

i=1

λiXi

)

= hr(X1)

holds for all λi ≥ 0 such that
∑n

i=1 λi = 1 if and only if the density f is (r − 1)-concave.

The paper is organized as follows. In Section 2, we explore the convergence along the CLT for
r-Rényi entropies. For r > 1, the convergence is fully characterized for densities on Rd, while for
r ∈ (0, 1) sufficient conditions are obtained for a large class of densities. More precisely, we prove
the convergence for log-concave densities and for compactly supported, spherically symmetric and
unimodal densities. As an application, we prove in Section 3 that a general r-Rényi EPI fails when
r ∈ (0, 1), thus establishing Theorem 1. We also complement this result by proving Theorems 2 and
3. In the last section, we provide an entropic characterization of the class of s-concave densities, and
include a reverse Rényi EPI as an immediate consequence.
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2 Convergence along the CLT for Rényi entropies

Let {Xn}n∈N be a sequence of independent identically distributed (henceforth, i.i.d.) centered random
vectors in Rd with finite covariance matrix. We denote by Zn the normalized sum

Zn =
X1 + · · ·+Xn√

n
. (7)

An important tool used to prove various forms of CLT is the characteristic function. Recall that the
characteristic function of a random vector X is defined by

ϕX(t) = E
[

ei〈t,X〉], t ∈ Rd.

Before providing sufficient conditions for the convergence along the CLT for Rényi entropy of order
r ∈ (0, 1), we first extend [12, Theorem 1.1] to higher dimensions.

Theorem 5. Let r > 1. Let X1, · · · ,Xn be i.i.d. centered random vectors in Rd. We denote by ρn the
density of Zn defined in (7). The following statements are equivalent.

1. hr(Zn) → hr(Z) as n → +∞, where Z is a Gaussian random vector with mean 0 and the same
covariance matrix as X1.

2. hr(Zn0) is finite for some integer n0.

3.
∫

Rd |ϕX1(t)|ν dt < +∞ for some ν ≥ 1.

4. Zn0 has a bounded density ρn0 for some integer n0.

Proof. 1 =⇒ 2: Assume that hr (Zn) → hr(Z) as n → +∞. Then there exists an integer n0 such that

hr(Z)− 1 < hr(Zn0) < hr(Z) + 1.

Since hr(Z) is finite, we conclude that hr(Zn0) is finite as well.
2 =⇒ 3: Assume that hr(Zn0) is finite for some integer n0. Then Zn0 has a density ρn0 ∈ Lr(Rd).
Case 1: If r ≥ 2, we have ρn0 ∈ L2(Rd). Using Plancherel’s identity, we have ϕZn0

∈ L2(Rd). It
follows that

∫

Rd

|ϕZn0
(t)|2 dt =

∫

Rd

|ϕX1 (t/
√
n0) |2n0 dt < +∞.

For ν = 2n0, we have
∫

Rd

|ϕX1(t)|ν dt < +∞.

Case 2: If r ∈ (1, 2), we apply the Hausdorff-Young inequality to obtain

‖ϕZn0
‖Lr′ ≤

1

(2π)d/r
′ ‖ρn0‖Lr ,

where r′ is the conjugate of r such that 1/r + 1/r′ = 1. Hence, for ν = r′n0, we have

∫

Rd

|ϕX1(t)|ν dt < +∞.

3 =⇒ 4: Since
∫

Rd |ϕX1(t)|ν dt < +∞ for some ν ≥ 1, one may apply Gnedenko’s local limit
theorems (see [24]), which is valid in arbitrary dimensions (see [5]). In particular, we have

lim
n→+∞

sup
x∈Rd

|ρn(x)− φΣ(x)| = 0, (8)

where φΣ denotes the density of a Gaussian random vector with mean 0 and the same covariance
matrix as X1. We deduce that there exists an integer n0 and a constant M > 0 such that ρn ≤ M for
all n ≥ n0.
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4 =⇒ 1: Since ρn0 is bounded, then ρn0 ∈ L2, and we deduce by Plancherel’s identity that
∫

Rd |ϕX1(t)|ν dt < +∞ for ν = 2n0. Hence, (8) holds and there exists M > 0 such that ρn ≤ M for all
n ≥ n0. Let us show that

∫

Rd ρn(x)
rdx →

∫

Rd φΣ(x)
rdx as n → +∞, where φΣ denotes the density of

a Gaussian random vector with mean 0 and the same covariance matrix as X1. By the CLT, for any
ε > 0, there exists T > 0 such that for all n large enough,

∫

|x|>T
ρn(x)dx < ε,

which implies that
∫

|x|>T
ρn(x)

rdx ≤ M r−1

∫

|x|>T
ρn(x)dx < M r−1ε.

The function φΣ satisfies similar inequalities. Hence, for any δ > 0, there exists T > 0 such that for
all n large enough,

∣

∣

∣

∣

∣

∫

|x|>T
ρn(x)

rdx−
∫

|x|>T
φΣ(x)

rdx

∣

∣

∣

∣

∣

< δ.

On the other hand, by (8), for all T > 0, the function ρrn(x)1{|x|≤T} converges everywhere to φr
Σ(x)1{|x|≤T}

as n → +∞. Since ρrn(x)1{|x|≤T} is dominated by the integrable function M r
1{|x|≤T}, one may use

the Lebesgue dominated theorem to conclude that

lim
n→+∞

∣

∣

∣

∣

∣

∫

|x|≤T
ρn(x)

rdx−
∫

|x|≤T
φΣ(x)

rdx

∣

∣

∣

∣

∣

= 0.

Remark 6. Theorem 5 fails for r ∈ (0, 1). For example, one can consider i.i.d. random vectors with a
bounded density ρ(x) such that

∫

Rd ρ(x)
rdx = +∞ (e.g., Cauchy-type distributions). The implication

4 =⇒ 2 (and thus 4 =⇒ 1) will not hold since by Jensen inequality hr(Zn) ≥ hr(X1/
√
n) = ∞ for all

n ≥ 1. As observed by Barron [3], the implication 1 =⇒ 4 does not necessarily hold in the Shannon
entropy case r = 1.

The following result yields a sufficient condition for convergence along the CLT to hold for Rényi
entropies of order r ∈ (0, 1) for a large class of random vectors in Rd.

Theorem 7. Let r ∈ (0, 1). Let X1, · · · ,Xn be i.i.d. centered log-concave random vectors in Rd. Then
we have hr(Zn) < +∞ for all n ≥ 1, and

lim
n→∞

hr (Zn) = hr(Z),

where Zn is the normalized sum in (7) and Z is a Gaussian random vector with mean 0 and the same
covariance matrix as X1.

Proof. Since log-concavity is preserved under independent sum, Zn is log-concave for all n ≥ 1. Hence,
for all n ≥ 1, Zn has a bounded log-concave density ρn, which satisfies

ρn(x) ≤ e−an|x|+bn ,

for all x ∈ Rd, and for some constants an > 0, bn ∈ R possibly depending on the dimension (see, e.g.,
[16]). Hence, for all n ≥ 1, we have

∫

Rd

ρn(x)
r dx ≤

∫

Rd

e−r(an|x|+bn) dx < +∞.

We deduce that hr(Zn) < +∞ for all n ≥ 1.
The boundedness of ρn implies that (8) holds, and thus there exists an integer n0 such that for all

n ≥ n0,

ρn(0) >
1

2
φΣ(0),

5



where Σ is the covariance matrix of X1 (and thus does not depend on n). Moreover, since ρn is
log-concave, one has for all x ∈ Rd that

ρn(rx) = ρn((1− r)0 + rx) ≥ ρn(0)
1−rρn(x)

r ≥ 1

21−r
φΣ(0)

1−rρn(x)
r.

Hence, for all T > 0, we have

∫

|x|>T
ρn(x)

r dx ≤ 21−r

φΣ(0)1−r

∫

|x|>T
ρn(rx) dx

=
21−r

rdφΣ(0)1−r
P (|Zn| > rT )

≤ 1

T 2

21−rE[|X1|2]
rd+2φΣ(0)1−r

,

where the last inequality follows from Markov’s inequality and the fact that

E[|Zn|2] =
E[|X1|2] + · · ·+ E[|Xn|2]

n
= E[|X1|2].

Hence, for every ε > 0, one may choose a positive number T such that for all n large enough,

∫

|x|>T
ρn(x)

rdx < ε,

∫

|x|>T
φΣ(x)

rdx < ε,

and hence
∣

∣

∣

∣

∣

∫

|x|>T
ρn(x)

rdx−
∫

|x|>T
φΣ(x)

rdx

∣

∣

∣

∣

∣

< ε.

On the other hand, from (8), we conclude as in the proof of Theorem 5 that for all T > 0,

lim
n→+∞

∣

∣

∣

∣

∣

∫

|x|≤T
ρn(x)

rdx−
∫

|x|≤T
φΣ(x)

rdx

∣

∣

∣

∣

∣

= 0.

A function f : Rd → R is called unimodal if the super-level sets {x ∈ Rd : f(x) > t} are convex
for all t ∈ R. Next, we provide a convergence result for random vectors in Rd with unimodal densities
under additional symmetry assumptions. First, we need the following stability result.

Proposition 8. The class of spherically symmetric and unimodal random variables is stable under
convolution.

Proof. Let f1 and f2 be two spherically symmetric and unimodal densities. By assumption, fi satisfy
that fi(Tx) = fi(x) for an orthogonal map T and |x| ≤ |y| implies fi(x) ≥ fi(y). By the layer cake
decomposition, we write

fi(x) =

∫ ∞

0
1{(u,v):fi(u)>v}(x, λ)dλ.

Apply Fubini’s theorem to obtain

f1 ⋆ f2(x) =

∫

Rd

f1(x− y)f2(y)dy

=

∫ ∞

0

∫ ∞

0

(∫

Rd

1{(u,v):f1(u)>v}(x− y, λ1)1{(u,v):f2(u)>v}(y, λ2)dy

)

dλ1dλ2. (9)

Notice that by the spherical symmetry and decreasingness of fi, the super-level set

Lλi
= {u : fi(u) > λi}

6



is an origin symmetric ball. Thus we can write the integrand in (9) as

∫

Rd

1Lλ1
(x− y)1Lλ2

(y)dy = 1Lλ1
⋆ 1Lλ2

(x).

This quantity is clearly dependent only on |x|, giving spherical symmetry. In addition, as the convo-
lution of two log-concave functions, 1Lλ1

⋆ 1Lλ2
is log-concave as well. It follows that for every λ1, λ2,

and |x| ≤ |y| we have
1Lλ1

⋆ 1Lλ2
(x) ≥ 1Lλ1

⋆ 1Lλ2
(y).

Integrating this inequality completes the proof.

Let us establish large deviation and pointwise inequalities for compactly supported, spherically
symmetric and unimodal densities.

Theorem 9 (Hoeffding [25]). Let X1, · · · ,Xn be independent random variables with mean 0 and
bounded in (ai, bi), respectively. One has for all T > 0,

P

(

n
∑

i=1

Xi > T

)

≤ exp

(

− 2T 2

∑n
i=1(bi − ai)2

)

.

The following result is Hoeffding’s inequality in higher dimensions.

Lemma 10. Let X1, · · · ,Xn be centered independent random vectors in Rd satisfying P(|Xi| > R) = 0
for some R > 0. One has for all T > 0 that

P

(∣

∣

∣

∣

X1 + · · ·+Xn√
n

∣

∣

∣

∣

> T

)

≤ 2d exp

(

− T 2

2d2R2

)

.

Proof. Let Xi,j be the j-th coordinate of the random vector Xi. Then we have

P

(∣

∣

∣

∣

X1 + · · ·+Xn√
n

∣

∣

∣

∣

> T

)

≤ P





d
⋃

j=1

{

|X1,j + · · ·+Xn,j| >
T
√
n

d

}



 (10)

≤
d
∑

j=1

P

(

|X1,j + · · ·+Xn,j| >
T
√
n

d

)

(11)

≤ 2d exp

(

− T 2

2d2R2

)

, (12)

where inequality (10) follows from the pigeon-hole principle, (11) from a union bound, and (12) follows
from applying Theorem 9 to X1,j + · · · +Xn,j and (−X1,j) + · · ·+ (−Xn,j).

We deduce the following pointwise estimate for unimodal spherically symmetric and bounded ran-
dom variables.

Corollary 11. Let X1, · · · ,Xn be i.i.d. random vectors with spherically symmetric unimodal density
supported on the Euclidean ball BR = {x : |x| ≤ R} for some R > 0. Let ρn denote the density of the
normalized sum Zn. Then there exists cd > 0 such that for all n ≥ 1 and |x| > 2,

ρn(x) ≤ cd exp

(

−(|x| − 1)2

2d2R2

)

.

Proof. Stating Lemma 10 in terms of ρn, we have

∫

|w|>T
ρn(w)dw ≤ 2d exp

(

− T 2

2d2R2

)

. (13)

7



Since the class of spherically symmetric unimodal random variables is stable under independent sum-
mation by Proposition 8, ρn is spherically symmetric and unimodal, so that

ρn(x) ≤
∫

B|x|\B|x|−1
ρn(w)dw

Vol(B|x|\B|x|−1)

≤
∫

|w|≥|x|−1 ρn(w)dw

(2d − 1)ωd
(14)

where B|x| represents the Euclidean ball of radius |x| centered at the origin and ωd is the volume of
the unit ball. Note that

Vol(B|x|\B|x|−1) = (|x|d − (|x| − 1)d)ωd ≥ (2d − 1)ωd,

since t 7→ td − (t− 1)d is increasing, so that (14) follows. Now applying (13) we have

ρn(x) ≤
∫

|w|≥|x|−1 ρn(w)dw

(2d − 1)ωd

≤ 2d

(2d − 1)ωd
exp

(

−(|x| − 1)2

2d2R2

)

and our result holds with

cd =
2d

(2d − 1)ωd
.

We are now ready to establish a convergence result for bounded spherically symmetric unimodal
random vectors.

Theorem 12. Let r ∈ (0, 1). Let X1, · · · ,Xn be i.i.d. random vectors in Rd with a spherically
symmetric unimodal density with compact support. Then we have

lim
n→∞

hr(Zn) = hr(Z),

where Zn is the normalized sum in (7) and Z is a Gaussian random vector with mean 0 and the same
covariance matrix as X1.

Proof. Let us denote by ρn the density of Zn. Since ρ1 is bounded, one may apply (8) together with
Lebesgue dominated convergence to conclude that for all T > 0,

lim
n→+∞

∣

∣

∣

∣

∣

∫

|x|≤T
ρn(x)

rdx−
∫

|x|≤T
φΣ(x)

rdx

∣

∣

∣

∣

∣

= 0.

On the other hand, by Corollary 11, one may choose T > 0 such that for all n ≥ 1,
∫

|x|>T
ρn(x)

rdx < ε,

∫

|x|>T
φΣ(x)

rdx < ε,

and hence
∣

∣

∣

∣

∣

∫

|x|>T
ρn(x)

rdx−
∫

|x|>T
φΣ(x)

rdx

∣

∣

∣

∣

∣

< ε.

3 Rényi EPIs of order r ∈ (0, 1)

A striking difference between Rényi EPIs of orders r ∈ (0, 1) and r ≥ 1 is the lack of an absolute
constant. Indeed, it was shown in [10] that for r ≥ 1 Rényi EPI of the form (2) holds for generic

independent random vectors with an absolute constant c ≥ 1
er

1
r−1 . In the following subsection, we

show that such a Rényi EPI does not hold for r ∈ (0, 1).
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3.1 Failure of a generic Rényi EPI

Definition 13. For r ∈ [0,∞], we define cr as the largest number such that for all n, d ≥ 1 and any
independent random vectors X1, · · · ,Xn in Rd, we have

Nr(X1 + · · ·+Xn) ≥ cr

n
∑

i=1

Nr(Xi). (15)

Then we can rephrase Theorem 1 as follows.

Theorem 14. For r ∈ (0, 1), the constant cr defined in (15) satisfies cr = 0.

The motivating observation for this line of argument is the fact that for r ∈ (0, 1), there exist
distributions with finite covariance matrices and infinite r-Rényi entropies. One might anticipate that
this could contradict the existence of an r-Rényi EPI, as the CLT forces the normalized sum of i.i.d.
random vectors X1, · · · ,Xn drawn from such a distribution to become “more Gaussian”. Heuristically,
one anticipates that Nr(X1 + · · · +Xn)/n = Nr(Zn) should approach Nr(Z) for large n, where Zn is
the normalized sum in (7) and Z is a Gaussian vector with the same covariance matrix as X1, while
∑n

i=1 Nr(Xi)/n = Nr(X1) is infinite.

Proof of Theorem 14. Let us consider the following density

fR,p,d(x) = CR(1 + |x|)−p
1BR

(x) x ∈ Rd,

with p,R > 0 and CR implicitly determined to make fR,p,d a density. Since the density is spherically
symmetric, its covariance matrix can be rewritten as σ2

RI for some σR > 0, where I is the identity
matrix. Computing in spherical coordinates one can check that limR→∞CR is finite for p > d, and we
can thus define a density f∞,p,d. What is more, when p > d+2, the limiting density f∞,p,d has a finite
covariance matrix, and has finite Rényi entropy if and only if p > d/r.

For fixed r ∈ (0, 1), we take p ∈ (d∗ + 2, d∗/r], where d∗ = min{d ∈ N : d > 2r/(1− r)} guarantees
the existence of such p. In this case, the limiting density f∞,p,d∗ is well defined and it has finite
covariance matrix σ2

∞I, but the corresponding r-Rényi entropy is infinite. Now we select independent
random vectors X1, · · · ,Xn from the distribution fR,p,d∗. Since fR,p,d∗ is a spherically symmetric and
unimodal density with compact support, we can apply Theorem 12 to conclude that

lim
n→∞

Nr(Zn) = σ2
RNr(ZId),

where Zn is the normalized sum in (7) and ZId is the standard d-dimensional Gaussian. Since
limR→∞ σR = σ∞ < ∞, we can take R large enough such that |σ2

R − σ2
∞| ≤ 1. Then we can take n

large enough such that
Nr(Zn) ≤ (σ2

∞ + 2)Nr(ZId). (16)

Since the limiting density f∞,p,d∗ has infinite r-Rényi entropy, given M > 0, we can take R large
enough such that

Nr(X1) ≥ M. (17)

Combining (16) and (17), we conclude that for inequality (15) to hold we must have

cr ≤
(σ2

∞ + 2)Nr(ZId)

M

for all M > 0. Then the statement follows from taking the limit M → ∞.

Remark 15. Random vectors in our proof has identical s-concave density with s ≤ −r/d. In the
following section, we provide a complementary result by showing that Rényi EPI of order r ∈ (0, 1)
does hold for s-concave densities when −r/d < s < 0.

9



3.2 Rényi EPIs for s-concave densities

As showed above, a generic Rényi EPI of the form (2) fails for r ∈ (0, 1). In this part, we establish
Rényi EPIs of the forms (2) and (3) for an important class of random vectors with s-concave densities
(see (5)).

Following Lieb [29], we prove Theorems 2 and 3 by showing their equivalent linearizations. The
following linearization of (2) and (3) is due to Rioul [37]. The c = 1 case was used in [27].

Theorem 16 ([37]). Let X1, · · · ,Xn be independent random vectors in Rd. The following statements
are equivalent.

1. There exist a constant c > 0 and an exponent α > 0 such that

Nα
r

(

n
∑

i=1

Xi

)

≥ c
n
∑

i=1

Nα
r (Xi). (18)

2. For any λ1, · · · , λn ≥ 0 such that
∑n

i=1 λi = 1, one has

hr

(

n
∑

i=1

√

λiXi

)

−
n
∑

i=1

λihr(Xi) ≥
d

2

(

log c

α
+

(

1

α
− 1

)

H(λ)

)

, (19)

where H(λ) , H(λ1, · · · , λn) is the discrete entropy defined as

H(λ) = −
n
∑

i=1

λi log λi.

Inequality (19) is the linearized form of inequality (18). One of the ingredients used to establish
(19) is Young’s sharp convolution inequality [4, 15]. Its information-theoretic formulation was given in
[21], which we recall below. We denote by r′ the Hölder conjugate of r such that 1/r + 1/r′ = 1.

Theorem 17 ([15, 21]). Let r > 0. Let λ1, · · · , λn ≥ 0 such that
∑n

i=1 λi = 1, and let r1, · · · , rn be
positive reals such that λi = r′/r′i. For any independent random vectors X1, · · · ,Xn in Rd, one has

hr

(

n
∑

i=1

√

λiXi

)

−
n
∑

i=1

λihri(Xi) ≥
d

2
r′
(

log r

r
−

n
∑

i=1

log ri
ri

)

. (20)

The second ingredient is a comparison between Rényi entropies hr and hri . When r > 1, we
have 1 < ri < r, and Jensen’s inequality implies that hr ≤ hri . In this case, one can deduce (19)
from (20) with hri replaced by hr. However, when r ∈ (0, 1), the order of r and ri are reversed,
i.e., 0 < r < ri < 1, and we need a reverse entropy comparison inequality. The so-called s-concave
densities do satisfy such a reverse entropy comparison inequality. The following result of Fradelizi, Li,
and Madiman [22] serves this purpose.

Theorem 18 ([22]). Let s ∈ R. Let f : Rd → [0,+∞) be an integrable s-concave function. The
function

G(r) = C(r)

∫

Rd

f(x)r dx

is log-concave for r > max{0,−sd}, where

C(r) = (r + s) · · · (r + sd). (21)

We deduce the following Rényi entropic comparison for random vectors with s-concave densities.

Corollary 19. Let X be a random vector in Rd with a s-concave density. For −sd < r < q < 1, we
have

hq(X) ≥ hr(X) + log
C(r)

1
1−rC(1)

q−r

(1−q)(1−r)

C(q)
1

1−q

.

10



Proof. Write q = (1− λ) · r+ λ · 1. Using the log-concavity of the function G in Theorem 18, we have

G(q) ≥ G(r)1−λG(1)λ = G(r)
1−q

1−rG(1)
q−r

1−r .

The above inequality can be rewritten in terms of entropy power as follows

C(q)
2
d
· 1
1−qNq(X) ≥ C(r)

2
d
· 1−q

1−r
· 1
1−qNr(X)C(1)

2
d
· q−r

1−r
· 1
1−q .

The desired statement follows from taking the logarithm of both sides of the above inequality.

Theorem 17 together with Corollary 19 yields the following Rényi EPI with a single Rényi parameter
r ∈ (0, 1) for s-concave densities.

Theorem 20. Let s ∈ (−1/d, 0) and r ∈ (−sd, 1). Let X1, · · · ,Xn be independent random vectors in
Rd with s-concave densities. For all λ = (λ1, · · · , λn) ∈ [0, 1]n such that

∑n
i=1 λi = 1, we have

hr

(

n
∑

i=1

√

λiXi

)

−
n
∑

i=1

λihr(Xi) ≥
d

2
A(λ) +

d
∑

k=1

gk(λ),

where

A(λ) = r′
(

(

1− 1

r′

)

log

(

1− 1

r′

)

−
n
∑

i=1

(

1− λi

r′

)

log

(

1− λi

r′

)

)

,

gk(λ) = (1− n)r′ log(1 + ks) + (1− r′) log
(

1 +
ks

r

)

+ r′
n
∑

i=1

(

1− λi

r′

)

log

(

1 + ks

(

1− λi

r′

))

.

Proof. Let ri be defined by λi = r′/r′i, where r′ and r′i are Hölder conjugates of r and ri, respectively.
Combining Theorem 17 with Corollary 19, we have

hr

(

n
∑

i=1

√

λiXi

)

−
n
∑

i=1

λihr(Xi) ≥
d

2
r′
(

log r

r
−

n
∑

i=1

log ri
ri

)

+

n
∑

i=1

λi log
C(r)

1
1−rC(1)

ri−r

(1−ri)(1−r)

C(ri)
1

1−ri

. (22)

Notice that C(r) = rdD(r), where C(r) is given in (21) and D(r) = (1 + s/r) · · · (1 + sd/r). Thus,

n
∑

i=1

λi log
C(r)

1
1−rC(1)

ri−r

(1−ri)(1−r)

C(ri)
1

1−ri

=

n
∑

i=1

λi

(

logD(r)

1− r
+

(

1

1− ri
− 1

1− r

)

logD(1)− logD(ri)

1− ri

)

+d

(

log r

1− r
−

n
∑

i=1

λi
log ri
1− ri

)

. (23)

Using the identities 1/(1 − r) = 1− r′ and λi/(1 − ri) = λi − r′, we have

n
∑

i=1

λi

(

logD(r)

1− r
+

(

1

1− ri
− 1

1− r

)

logD(1) − logD(ri)

1− ri

)

= (1− r′) logD(r) + (1− n)r′ logD(1) +

d
∑

k=1

n
∑

i=1

(r′ − λi) log

(

1 +
ks

ri

)

=
d
∑

k=1

(

(1− r′) log

(

1 +
ks

r

)

+ (1− n)r′ log(1 + ks) +
n
∑

i=1

(r′ − λi) log

(

1 +
ks

ri

)

)

=

d
∑

k=1

gk(λ). (24)

The last identity follows from 1/ri = 1− λi/r
′. Using (24) and (23), the RHS of (22) can be written

as

d

2
r′
(

log r

r
−

n
∑

i=1

log ri
ri

)

+ d

(

log r

1− r
−

n
∑

i=1

λi
log ri
1− ri

)

+
d
∑

k=1

gk(λ) =
d

2
A(λ) +

d
∑

k=1

gk(λ).

This concludes the proof.
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Having Theorems 16 and 20 at hand, we are ready to prove Theorems 2 and 3.

3.2.1 Proof of Theorem 2

Put Theorems 16 and 20 together. Then it suffices to find c such that the following inequality

d

2
A(λ) +

d
∑

k=1

gk(λ) ≥
d

2
log c

holds for all λ = (λ1, · · · , λn) ∈ [0, 1]n such that
∑n

i=1 λi = 1. Hence, we can set

c = inf
λ

exp

(

A(λ) +
2

d

d
∑

k=1

gk(λ)

)

,

where the infimum runs over all λ = (λ1, · · · , λn) ∈ [0, 1]n such that
∑n

i=1 λi = 1. For fixed r,
both A(λ) and gk(λ) are sum of one-dimensional convex functions of the form (1 + x) log(1 + x).
Furthermore, both A(λ) and gk(λ) are permutation invariant. Hence, the minimum is achieved at
λ = (1/n, · · · , 1/n). This yields the numerical value of c in Theorem 2.

3.2.2 Proof of Theorem 3

The following lemma in [33] serves us in the proof of Theorem 3.

Lemma 21 ([33]). Let c > 0. Let L,F : [0, c] → [0,∞) be twice differentiable on (0, c], continuous on
[0, c], such that L(0) = F (0) = 0 and L′(c) = F ′(c) = 0. Let us also assume that F (x) > 0 for x > 0,
that F is strictly increasing, and that F ′ is strictly decreasing. Then L′′

F ′′ increasing on (0, c) implies
that L

F is increasing on (0, c) as well. In particular,

max
x∈[0,c]

L(x)

F (x)
=

L(c)

F (c)
.

Proof of Theorem 3. Apply Theorems 16 and 20 with n = 2. Then it suffices to find α such that for
all λ ∈ [0, 1] we have

d

2
A(λ) +

d
∑

k=1

gk(λ) ≥
d

2

(

1

α
− 1

)

H(λ),

where

A(λ) = r′
((

1− 1

r′

)

log

(

1− 1

r′

)

−
(

1− λ

r′

)

log

(

1− λ

r′

)

−
(

1− 1−λ

r′

)

log

(

1− 1−λ

r′

))

,

gk(λ) = (1− r′) log
(

1 +
ks

r

)

− r′ log(1 + ks)

+ r′
((

1− λ

r′

)

log

(

1+ks

(

1− λ

r′

))

+

(

1− 1−λ

r′

)

log

(

1+ks

(

1− 1−λ

r′

)))

.

We can set

α =

(

1− sup
0≤λ≤1

(

−A(λ)

H(λ)
− 2

d

d
∑

k=1

gk(λ)

H(λ)

))−1

. (25)

We will show that the optimal value is achieved at λ = 1/2. Since the function is symmetric about
λ = 1/2, it suffices to show that

− A(λ)

H(λ)
− 2

d

n
∑

k=1

gk(λ)

H(λ)
(26)

is increasing on [0, 1/2]. It has been shown in [27] that −A(λ)/H(λ) is increasing on [0, 1/2]. We
will show that for each k = 1, · · · , n the function −gk(λ)/H(λ) is also increasing on [0, 1/2]. One

12



can check that −gk(λ) and H(λ) satisfy the conditions in Lemma 21. Hence, it suffices to show that
−g′′k(λ)/H

′′(λ) is increasing on [0, 1/2]. Elementary calculation yields that

H ′′(λ) = − 1

λ(1− λ)
.

Define x = λ
|r′| and y = 1−λ

|r′| = 1
|r′| − x. Then one can check that

−g′′k(λ) =
ks

|r′|

(

1

1 + ks(1 + x)
+

1

1 + ks(1 + y)
+

1

(1 + ks(1 + x))2
+

1

(1 + ks(1 + y))2

)

.

Hence, we have

− g′′k(λ)

H ′′(λ)
= ksr′W (x),

where

W (x) = xy

(

1

1 + ks(1 + x)
+

1

1 + ks(1 + y)
+

1

(1 + ks(1 + x))2
+

1

(1 + ks(1 + y))2

)

.

Since s, r′ < 0, it suffices to show that W (x) is increasing on [0, 1
2|r′| ]. We rewrite W as follows

W (x) = W1(x) +W2(x),

where

W1(x) = xy

(

1

1 + ks(1 + x)
+

1

1 + ks(1 + y)

)

,

W2(x) = xy

(

1

(1 + ks(1 + x))2
+

1

(1 + ks(1 + y))2

)

. (27)

We will show that both W1(x) and W2(x) are increasing on [0, 1
2|r′| ].

Now let us focus on W1. Since y = 1
|r′| − x, one can check that

W ′
1(x) =

(

1

|r′| −2x

)(

1

1+ks(1+x)
+

1

1+ks(1+y)

)

− ksxy

(

1

(1+ks(1+x))2
− 1

(1+ks(1+y))2

)

.

Let us denote

a , a(x) = 1 + ks(1 + x), (28)

b , b(x) = 1 + ks(1 + y) = 1 + ks

(

1

|r′| − x+ 1

)

. (29)

The condition r > −sd implies that a, b ≥ 0. With these notations, we have

W ′
1(x) =

(

1

a
+

1

b

)(

1

|r′| − 2x− ksxy

(

1

a
− 1

b

))

=

(

1

a
+

1

b

)(

1

|r′| − 2x

)

(

1− (ks)2
xy

ab

)

.

The last identity follows from
1

a
− 1

b
=

ks

ab

(

1

|r′| − 2x

)

.

Since a, b ≥ 0 and x ∈ [0, 1
2|r′| ], it suffices to show that

ab− (ks)2xy ≥ 0.

13



Using (28) and (29), we have

ab− (ks)2xy = (1 + ks)

(

1 +
ks

r

)

.

Then the desired statement follows from that s > −1/d and r > −sd. We conclude that W1 is
increasing on [0, 1

2|r′| ].

It remains to show that W2(x) is increasing on [0, 1
2|r′| ]. Recall the definition of W2(x) in (27), one

can check that

W ′
2(x) =

(

1

|r′| − 2x

)(

1

a2
+

1

b2

)

− 2ksxy

(

1

a3
− 1

b3

)

=
b− a

ks

(

1

a2
+

1

b2

)

− 2ksxy

(

1

a3
− 1

b3

)

=
b− a

ksa3b3
T (x),

where a and b are defined in (28) and (29), and

T (x) = ab(a2 + b2)− 2k2s2xy(a2 + ab+ b2).

Since
b− a

ks
=

1

|r′| − 2x ≥ 0, x ∈ [0,
1

2|r′| ],

it suffices to show that T (x) ≥ 0 for [0, 1
2|r′| ]. Using the identity

a′(x)b(x) + a(x)b′(x) = ks(b− a) = −a(x)a′(x)− b(x)b′(x),

one can check that
T ′(x) = ks(a− b)U(x),

where
U(x) = a2 + b2 + 4ab− 2k2s2xy.

Notice that U ′(x) ≡ 0, which implies that U(x) is a constant. Since a, b ≥ 0, we have

U(0) = a2 + b2 + 4ab > 0.

Hence, T ′(x) ≤ 0, i.e., T (x) is decreasing. Therefore, since a = b when x = 1
2|r′| , we have

T (x) ≥ T

(

1

2|r′|

)

= 2a2(a2 − 3k2s2x2) atx =
1

2|r′| .

It suffices to have

a2 ≥ 3k2s2x2, x =
1

2|r′| ,

which is equivalent to
1

|r′| ≤
2

1 +
√
3

(

1

k|s| − 1

)

.

This finishes the proof that every −gk(λ)/H(λ) is also increasing on [0, 1/2]. Then the numerical value
of α in Theorem 3 follows from setting λ = 1/2 in (25).

Remark 22. Our optimization argument heavily relies on the fact that −A(λ)/H(λ) and −gk(λ)/H(λ)
are monotonically increasing for λ ∈ [0, 1/2]. As observed in [27], the monotonicity of −A(λ)/H(λ)
does not depend on the value of r. Numerical examples show that −gk(λ)/H(λ), even the whole
quantity in (26), is not monotone when r is small. This is one of the reasons for the restriction r > r0.

Remark 23. Note that the condition r > −sd of Theorem 18 can be rewritten as

1

|r′| <
(

1

d|s| − 1

)

.

We do not know whether Theorem 3 holds when

2

1 +
√
3

(

1

d|s| − 1

)

<
1

|r′| <
(

1

d|s| − 1

)

.

14



4 An entropic characterization of s-concave densities

Let X and Y be real-valued random variables (possibly dependent) with the identical density f . Cover
and Zhang [20] proved that

h(X + Y ) ≤ h(2X)

holds for every coupling of X and Y if and only if f is log-concave. This yields an entropic char-
acterization of one-dimensional log-concave densities. We will extend Cover and Zhang’s result to
Rényi entropies of random vectors with s-concave densities (defined in (5)), which particularly include
log-concave densities as a special case. This was previously proved in [28] when f is continuous.

Firstly, we introduce some classical variations of convexity and concavity which will be needed in
our proof.

Definition 24. Let λ ∈ (0, 1) be fixed. A function f : Rd → R with convex support is called almost
λ-convex if the following inequality

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) (30)

holds for almost every pair x, y in the domain of f . We say that f is λ-convex if the above inequality
holds for every pair x, y in the domain of f . Particularly, for λ = 1/2, it is usually called mid-convex
or Jensen convex. We say that f is convex if f is λ-convex for any λ ∈ (0, 1).

One can define almost λ-concavity, λ-concavity and concavity by reversing inequality (30). Adamek
[1, Theorem 1] showed that an almost λ-convex function is identical to a λ-convex function except on a
set of Lebesgue measure 0. (To apply the theorem there, one can take the ideals I1 and I2 as the family
of sets with Lebesgue measure 0 in Rd and R2d, respectively). In general, λ-convexity is not equivalent
to convexity, as it is not a strong enough notion to imply continuity, at least not in a logical framework
that accepts the axiom of choice. Indeed, counterexamples can be constructed using a Hamel basis for
R as a vector space over Q. However, in the case that f is Lebesgue measurable, a classical result of
Blumberg [6] and Sierpinski [40] (see also [18] in more general setting) shows that λ-convexity implies
continuity, and thus convexity.

Theorem 25. Let s > −1/d and we define r = 1 + s. Let f be a probability density on Rd. The
following statements are equivalent.

1. The density f is s-concave.

2. For any λ ∈ (0, 1), we have hr(λX + (1− λ)Y ) ≤ hr(X) for any random vectors X and Y with
the identical density f .

3. We have hr
(

X+Y
2

)

≤ hr(X) for any random vectors X and Y with the identical density f .

Proof. We only prove the statement for s > 0, or equivalently r > 1. The proof for −1/d < s < 0, or
equivalently 1− 1/d < r < 1, is similar and sketched below.

1 =⇒ 2: The proof is taken from [28]. We include it for completeness. Let g be the density of
λX + (1− λ)Y . Then we have

hr(X) =
1

1− r
logEf r−1(X)

=
1

1− r
log(λEf r−1(X) + (1− λ)Ef r−1(Y )) (31)

≥ 1

1− r
logEf r−1(λX + (1− λ)Y ) (32)

=
1

1− r
log

∫

Rd

f(x)r−1g(x)dx

≥ 1

1− r
log

(∫

Rd

f(x)rdx

)1− 1
r
(∫

Rd

g(x)rdx

)
1
r

(33)

=
r − 1

r
hr(X) +

1

r
hr(λX + (1− λ)Y ).
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This is equivalent to the desired statement. Identity (31) follows from the assumption that X and Y
have the same distribution. In inequality (32), we use the concavity of f r−1 and the fact that 1

1−r log x

is decreasing when r > 1. Inequality (33) follows from Hölder’s inequality and the fact that 1
1−r log x

is decreasing when r > 1. For 1 − 1/d < r < 1, the statement follows from the same argument in
conjunction with the convexity of f r−1, the converse of Hölder’s inequality and the fact that 1

1−r log x
is increasing when 0 < r < 1.

2 =⇒ 3: Obvious by taking λ = 1
2 .

3 =⇒ 1: We will prove the statement by contradiction. We first show an example borrowed from
Cover and Zhang [20] to illustrate the “mass transferring” argument used in our proof. Consider the
density f(x) = 3/2 in the intervals (0, 1/3) and (2/3, 1). It is clear that f is not (r − 1)-concave. The
joint distribution of (X,Y ) with Y ≡ X is supported on the diagonal line y = x. The Radon-Nikodym
derivative g with respect to the one-dimensional Lebesgue measure on the line y = x exists and is
shown in Figure 1. We remove some “mass” from the diagonal line y = x to the lines y = x − 2/3
and y = x + 2/3. The new Radon-Nikodym derivative ĝ is shown in Figure 2. Let (X̂, Ŷ ) be a pair
of random variables whose joint distribution possesses this new Radon-Nikodym derivative. It is easy
to see that X̂ and Ŷ still have the same density f . But X̂ + Ŷ is uniformly distributed on (0, 2), and
thus hr(X̂ + Ŷ ) = log 2. One can check that hr(2X) = log(4/3).

Now we turn to the general case. Suppose that f is not (r − 1)-concave, i.e., f r−1 is not concave
(for r > 1). We claim that there exists a set A ⊆ R2d of positive Lebesgue measure on R2d such that
the inequality

2f r−1

(

x+ y

2

)

< f r−1(x) + f r−1(y) (34)

holds for all (x, y) ∈ A. Otherwise, the converse of (34) holds for almost every pair (x, y), and thus
f r−1 is an almost mid-concave function (i.e., 1/2-concave). By Theorem 1 in [1], f r−1 is identical to
a mid-concave function except on a set of Lebesgue measure 0. Without changing the distribution, we
can modify f such that f r−1 is mid-concave. Using the equivalence of mid-concavity and concavity
(under the Lebesgue measurability), after modification, f r−1 is concave, i.e., f is (r−1)-concave. This
contradicts our assumption. Hence, there exists such a set A with positive Lebesgue measure on R2d.
Then there exists y such that (34) holds for a set of x with positive Lebesgue measure on Rd. We
rephrase this statement in a form suitable for our purpose. There is x0 6= 0 such that the set

Λ =
{

x ∈ Rd : 2f(x)r−1 < f(x+ x0)
r−1 + f(x− x0)

r−1
}

(35)

has positive Lebesgue measure on Rd. For ǫ > 0, we denote by Λ(ǫ) a ball of radius ǫ whose intersection
with Λ has positive Lebesgue measure on Rd. Consider (X,Y ) such that X ≡ Y , where X and Y
have the identical density f . Let g(x, y) be the Radon-Nikodym derivative of (X,Y ) with respect to
the d-dimensional Lebesgue measure on the “diagonal line” y = x. Now we build a new density ĝ by
translating a small amount of “mass” from “diagonal points” (x − x0, x − x0) and (x + x0, x + x0) to
“off-diagonal points” (x− x0, x+ x0) and (x+ x0, x− x0). To be more precise, we define the new joint
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density ĝ as

ĝ(x, y) = g(x, y)1{x=y} −
√

d/2δ(1{(x−x0,x−x0):x∈Λ(ǫ)} + 1{(x+x0,x+x0):x∈Λ(ǫ)})

+
√

d/2δ(1{(x−x0,x+x0):x∈Λ(ǫ)} + 1{(x+x0,x−x0):x∈Λ(ǫ)}),

where δ > 0 and 1S is the indicator function of the set S. The function ĝ is supported on the “diagonal
line” y = x and “off-diagonal segments” {(x− x0, x+ x0) : x ∈ Λ(ǫ)} and {(x+ x0, x− x0) : x ∈ Λ(ǫ)},
which are disjoint for sufficiently small ǫ > 0. (This is similar to Figure 2). When δ > 0 is small
enough, ĝ(x, y) is non-negative everywhere. Furthermore, our construction preserves the “total mass”.
Hence, the function ĝ(x, y) is indeed a probability density with respect to the d-dimensional Lebesgue
measure on the “diagonal line” and two “off-diagonal segments”. Let (X̂, Ŷ ) be a pair with the joint
density ĝ(x, y). The marginals X̂ and Ŷ have the same distribution as that of X, since the “positive
mass” on “off-diagonal points” complements the “mass deficit” on “diagonal points” when we project

in the x and y directions. We claim that X̂+Ŷ
2 has larger entropy than X̂ . One can check that the

density of X̂+Ŷ
2 is

f̂(x) = f(x) + δ(21Λ(ǫ) − 1Λ(ǫ)+x0
− 1Λ(ǫ)−x0

).

Let Ω denote the union of Λ(ǫ), Λ(ǫ) + x0 and Λ(ǫ)− x0. Then we have

hr

(

X̂ + Ŷ

2

)

=
1

1− r
log

(
∫

Ω
f̂(x)rdx+

∫

Ωc

f r(x)dx

)

. (36)

Since x0 6= 0, for ǫ > 0 small enough, Ω is the union of disjoint translates of Λ(ǫ). When δ > 0 is
sufficiently small, we have

∫

Ω
f̂(x)rdx =

∫

Λ(ǫ)
[(f(x) + 2δ)r + (f(x+ x0)− δ)r + (f(x− x0)− δ)r] dx

<

∫

Λ(ǫ)
[f(x)r + f(x+ x0)

r + f(x− x0)
r] dx (37)

=

∫

Ω
f(x)rdx, (38)

where inequality (37) follows from the observation that for x ∈ Λ(ǫ) ⊂ Λ (see (35)) the derivative of
the integrand at δ = 0 is

r[2f(x)r−1 − f(x− x0)
r−1 − f(x+ x0)

r−1] < 0. (39)

Since r > 1, (36) together with (38) implies that

hr

(

X̂ + Ŷ

2

)

>
1

1− r
log

(∫

Ω
f(x)rdx+

∫

Ωc

f(x)rdx

)

= h(X) = h(X̂).

This is contradictory to our assumption. Hence, f has to be (r − 1)-concave. For 1 − 1/d < r < 1,
we redefine the set Λ by reversing inequality (35), and inequality (37) will be also reversed. We will
arrive at the same conclusion.

Remark 26. The proof of 1 =⇒ 2 is an immediate consequence of Theorem 3.36 in [30]. The theorem
there draws heavily on the ideas of [42], where a related study, deriving the Schur convexity of Rényi
entropies under the assumption of exchangeability and s-concavity of the random variables, generalizing
Yu’s results in [43] on the entropies of sums of i.i.d. log-concave random variables. Although we state
Theorem 25 for two random vectors, the argument also works for more than two random vectors.
Hence, it implies the seemingly stronger Theorem 4.

As an immediate consequence of Theorem 25, we have the following reverse Rényi EPI for random
vectors with the same distribution.

Corollary 27. Let s > −1/d and let r = 1 + s. Let X and Y be (possibly dependent) random vectors
in Rd with the same density f being s-concave. Then we have

Nr(X + Y ) ≤ 4Nr(X).
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