Homework #5 – Limits of functions, sided limits

Exercise 1. Determine whether or not the given limits exist. Prove your assertion in each case, by using the definition or theorems.

- 1. $\lim_{x \to +\infty} \frac{-x^2}{2x+3}$.
- 2. $\lim_{x \to +\infty} \frac{\sqrt{x}}{x^2 1}$.
- 3. $\lim_{x \to +\infty} \frac{\sin(x)}{x}$.
- 4. $\lim_{x\to+\infty}(-1)^x$.
- 5. $\lim_{x \to +\infty} x \cos(x)$.

Exercise 2.

- 1. Verify that for all x > 0, $\frac{x-1}{x} < \frac{|x|}{x} \le 1$.
- 2. Evaluate $\lim_{x \to +\infty} \frac{\lfloor x \rfloor}{x}$.
- 3. Evaluate $\lim_{x\to-\infty} \frac{\lfloor x \rfloor}{x}$.

Exercise 3. Prove that if the limit of a function at a point exists, then the limit is unique.

Exercise 4. Prove that $\lim_{x\to 0} \frac{1}{x}$ does not exist.

Exercise 5. Prove that $\lim_{x\to 0} \frac{1}{\sin(x)}$ does not exist.

Exercise 6. Evaluate the given limits and prove your conclusion using only the definition. 1. $\lim_{x\to 0} \frac{x^2}{|x|}$.

- 2. $\lim_{x \to 0} (x+1)^3$.
- 3. $\lim_{x \to 2} \frac{x^2 + 4}{x + 2}$.
- 4. $\lim_{x \to 1} \frac{x^2 x 2}{2x 3}$.

Exercise 7. Use mathematical induction to prove that for all $n \in \mathbb{N}$, $\lim_{x \to a} x^n = a^n$.

Exercise 8.

1. Determine what is wrong with the following argument:

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = \left(\lim_{x \to 0} x\right) \left(\lim_{x \to 0} \sin\left(\frac{1}{x}\right)\right) = 0 \cdot (\text{anything}) = 0.$$

2. Use a correct method to find $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.

Exercise 9. Use the definition to prove that $\lim_{x\to 1^+} \frac{x}{x-1} = +\infty$.

Exercise 10. Evaluate the given limits. Prove your assertion.

- 1. $\lim_{x \to -1^{-}} \lfloor x \rfloor$.
- 2. $\lim_{x \to -1^+} \lfloor x \rfloor$.
- 3. $\lim_{x\to 0^+} \exp\left(-\frac{1}{x}\right).$
- 4. $\lim_{x \to 0^+} \frac{1}{x}$.
- 5. $\lim_{x\to 0^+} \cos\left(\frac{1}{x}\right)$.

Exercise 11. Prove the following theorem:

Let a > 0. Let $f : (0, a) \to \mathbb{R}$ be a function. If either of the limits

$$\lim_{x \to 0^+} f(x) \quad \text{or} \quad \lim_{x \to +\infty} f\left(\frac{1}{x}\right)$$

exist, then both limits exist and they are equal.