Homework \#6 - Continuity of a function, properties of continuous functions

Exercise 1. Determine where the given functions are continuous. Explain clearly. (First, find the domain of the given functions.)

1. $f(x)=|x-1|$
2. $f(x)=\frac{|x|}{x}$
3.

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

4.

$f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
5. $f(x)=\lfloor x\rfloor$
6. $f(x)=\frac{1}{\sqrt{x}}$

Exercise 2. Prove that if the functions $f, g: D \rightarrow \mathbb{R}$ are continuous at a, then the given functions are also continuous at a.

1. $|f|$
2. $\min (f, g)$
3. $\max (f, g)$

Exercise 3. Prove of find a counterexample to the following statements.

1. f bounded on $[a, b]$ implies that f is continuous on $[a, b]$.
2. f continuous on (a, b) implies that f is bounded on (a, b).
3. f^{2} continuous on $[a, b]$ implies that f is continuous on $[a, b]$.
4. $f+g$ and f continuous on (a, b) implies that g is continuous on (a, b).
5. $f g$ and f continuous on (a, b) implies that g is continuous on (a, b).
6. $|f|$ continuous on $[a, b]$ implies that f is continuous on $[a, b]$.
7. f is continuous at c if and only if for any sequence $\left\{x_{n}\right\}$ converging to c, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f(c)$.

Exercise 4. Give examples of the following requested functions, if possible.

1. function f defined on \mathbb{R} but not continuous at any point of \mathbb{R}.
2. function f defined on \mathbb{R} and continuous at exactly one point of \mathbb{R}.

Exercise 5. Give an example of a function $f:[a, b] \rightarrow \mathbb{R}$ that is not continuous but whose range is

1. an open and bounded interval.
2. an open and unbounded interval.
3. a closed and unbounded interval.
