University of Florida

Homework #6 – Continuity of a function, properties of continuous functions

Exercise 1. Determine where the given functions are continuous. Explain clearly. (First, find the domain of the given functions.)

1.
$$f(x) = |x - 1|$$

2. $f(x) = \frac{|x|}{x}$
3. $f(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$
4. $f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$
5. $f(x) = \lfloor x \rfloor$
6. $f(x) = \frac{1}{\sqrt{x}}$

Exercise 2. Prove that if the functions $f, g: D \to \mathbb{R}$ are continuous at a, then the given functions are also continuous at a.

- 1. |f|
- 2. $\min(f, g)$
- 3. $\max(f,g)$

Exercise 3. Prove of find a counterexample to the following statements.

- 1. f bounded on [a, b] implies that f is continuous on [a, b].
- 2. f continuous on (a, b) implies that f is bounded on (a, b).
- 3. f^2 continuous on [a, b] implies that f is continuous on [a, b].
- 4. f + g and f continuous on (a, b) implies that g is continuous on (a, b).
- 5. fg and f continuous on (a, b) implies that g is continuous on (a, b).
- 6. |f| continuous on [a, b] implies that f is continuous on [a, b].
- 7. f is continuous at c if and only if for any sequence $\{x_n\}$ converging to c, the sequence $\{f(x_n)\}$ converges to f(c).

Exercise 4. Give examples of the following requested functions, if possible.

- 1. function f defined on \mathbb{R} but not continuous at any point of \mathbb{R} .
- 2. function f defined on \mathbb{R} and continuous at exactly one point of \mathbb{R} .

Exercise 5. Give an example of a function $f: [a, b] \to \mathbb{R}$ that is not continuous but whose range is

- 1. an open and bounded interval.
- 2. an open and unbounded interval.
- 3. a closed and unbounded interval.