Homework #7 – Uniform continuity

Exercise 1. Determine whether or not the given functions are uniformly continuous.

- 1. $f(x) = \frac{1}{x}$, with $x \in (0, 1]$
- 2. $f(x) = x^3$, with $x \in [0, 2)$
- 3. $f(x) = \frac{x}{x+4}$, with $x \in [0, 2)$
- 4. $f(x) = \sin(\frac{1}{x})$, with $x \in (0, 1]$
- 5. $f(x) = \frac{1}{x^2}$, with $x \in [1, +\infty)$

Exercise 2. If f and g are uniformly continuous on D, prove that:

- 1. f + g is uniformly continuous on D
- 2. cf is uniformly continuous on D
- 3. if f and g are both bounded on D, then fg is uniformly continuous on D
- 4. If D is bounded, then f is bounded

Exercise 3. Prove or find a counterexample to the following statements.

- 1. f bounded and continuous on D implies that f is uniformly continuous on D.
- 2. f uniformly continuous on D implies that f is bounded on D.
- 3. f continuous on [a, b] implies that f is uniformly continuous on [a, b].
- 4. f bounded on D implies that f is uniformly continuous on D.
- 5. f uniformly continuous on (a, b) implies that f is bounded on (a, b).

Exercise 4. Give an example of a function f_1, f_2, f_3, f_4 that satisfies each of the given conditions.

- 1. f_1 continuous but not uniformly continuous on $[0, +\infty)$ with $\lim_{x\to +\infty} f_1(x) = -\infty$.
- 2. f_2 continuous but not uniformly continuous on $[0, +\infty)$ where $\lim_{x\to+\infty} f_2(x)$ does not exist.
- 3. f_3 uniformly continuous on $[0, +\infty)$ with $\lim_{x\to+\infty} f_3(x) = -\infty$.
- 4. f_4 uniformly continuous on $[0, +\infty)$ where $\lim_{x\to+\infty} f_4(x)$ does not exist.

Exercise 5. Give an example of a function f with a Lipschitz constant $L \ge 1$, such that

- 1. f has no fixed points
- 2. f has exactly one fixed point
- 3. f has infinitely many fixed points