University of Florida

Homework #1 -Review of Probability

You must master the 1st semester part of this course – MAP 6472.

Exercise 1.

Let $N: (\Omega, \mathcal{F}) \to (\mathbb{N}, \mathcal{P}(\mathbb{N}))$ be a random variable with values in \mathbb{N} , and let $\{X_n\}_{n\geq 1}: (\Omega, \mathcal{F}) \to \mathbb{N}$ $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a sequence of random variables. Show that X_N and $\sum_{k=1}^N X_k$ are random variables on (Ω, \mathcal{F}) .

Exercise 2.

Let $A, B \subset \Omega$. Recall that $\sigma(\{A\})$ is the smallest σ -algebra on Ω containing A.

1. Describe $\sigma(\{A\})$ and $\sigma(\{A\}) \cup \sigma(\{B\})$.

2. Is $\sigma(\{A\}) \cup \sigma(\{B\})$ a σ -algebra in general? What about $\sigma(\{A\}) \cap \sigma(\{B\})$?

Exercise 3.

Definition: Let $X: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a r.v. We denote by $\sigma(X)$ the smallest σ -algebra included in $\mathcal{P}(\Omega)$ such that X is $(\Omega, \sigma(X))$ -measurable.

- 1. Show that $\sigma(X) = X^{-1}(\mathcal{B}(\mathbb{R}))$.
- 2. Y is $\sigma(X)$ -measurable if and only if there exists a measurable function $g: (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to$ $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that Y = q(X).

3. Show that

$$\sigma(X,Y) = \sigma(\sigma(X) \cup \sigma(Y)) = \sigma(X^{-1}(\mathcal{B}(\mathbb{R})) \cup Y^{-1}(\mathcal{B}(\mathbb{R}))).$$

Exercise 4.

Let $X, Y: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be random variables such that $X \leq Y$ a.s.

- 1. Show that $\mathbb{E}[X] \leq \mathbb{E}[Y]$.
- 2. Show that if $\mathbb{E}[X] = \mathbb{E}[Y]$, then X = Y a.s.

Exercise 5.

Let $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable. Show that

$$\forall A \in \mathcal{F}, \ \mathbb{E}[X1_A] = 0 \implies X = 0 \text{ a.s.}$$

Exercise 6.

Let $\{X_n\}_{n\geq 1}$ be a decreasing sequence of non-negative r.v. such that $X_1 \in L^1$ (that is $\mathbb{E}[|X_1|] < +\infty$). Show that $\{X_n\}$ converges to X a.s. for some random variable X, and

$$\lim_{n \to +\infty} \mathbb{E}[X_n] = \mathbb{E}[X].$$

Is the statement still valid if $\mathbb{E}[|X_1|] = +\infty$?