Homework \#2 - Conditional Expectation

Exercise 1. (Conditional expectation in L^{1})

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let \mathcal{G} be a sub- σ-algebra. Let $X \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$. The conditional expectation of X with respect to \mathcal{G}, denoted by $\mathbb{E}[X \mid \mathcal{G}]$, is a random variable Y such that

1. Y is \mathcal{G}-measurable.
2. $\mathbb{E}\left[X 1_{A}\right]=\mathbb{E}\left[Y 1_{A}\right]$, for all $A \in \mathcal{G}$.

Prove all the properties of the conditional expectation when $X \in L^{1}$ (linearity, monotonicity, conditional Jensen's inequality, tower property, ...).

Exercise 2.

Let $X \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$.

1. Determine $\mathbb{E}[X \mid\{\emptyset, \Omega\}]$.
2. Determine $\mathbb{E}[X \mid \mathcal{P}(\Omega)]$.
3. Determine $\mathbb{E}[X \mid \mathcal{F}]$.
4. Let $A \in \mathcal{F}$. Determine $\mathbb{E}[X \mid \sigma(A)]$.

Exercise 3.

Let $(\Omega, \mathcal{F}, \mathbb{P})=([0,1], \mathcal{B}([0,1]), \operatorname{Unif}([0,1]))$ and let $\mathcal{G}=\sigma\left(\left[0, \frac{1}{2}\right]\right)$. For $X \in L^{1}(\mathcal{B}([0,1]))$, determine $\mathbb{E}[X \mid \mathcal{G}]$.

Exercise 4. (Beppo-Levi's monotone convergence)

Let $\left\{X_{n}\right\}_{n \geq 1}$ be a non-decreasing sequence of non-negative random variables such that $\lim _{n} X_{n}=$ X. Then,

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left[X_{n} \mid \mathcal{G}\right]=\mathbb{E}\left[\lim _{n \rightarrow+\infty} X_{n} \mid \mathcal{G}\right] \quad \text { a.s. }
$$

Exercise 5. (Fatou's lemma)

Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of non-negative random variables. Then,

$$
\mathbb{E}\left[\liminf _{n \rightarrow+\infty} X_{n} \mid \mathcal{G}\right] \leq \liminf _{n \rightarrow+\infty} \mathbb{E}\left[X_{n} \mid \mathcal{G}\right] \text { a.s. }
$$

Hint: One may use Beppo-Levi's monotone convergence.

Exercise 6. (Lebesgue dominated convergence)

Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of integrable random variables. Assume that $\left\{X_{n}\right\}$ convergence to X a.s., and that there exists Y integrable such that $\forall n,\left|X_{n}\right| \leq Y$ a.s. Then,

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left[X_{n} \mid \mathcal{G}\right]=\mathbb{E}[X \mid \mathcal{G}] \quad \text { a.s. }
$$

Hint: One may note that $X_{n}+Y \geq 0, Y-X_{n} \geq 0$, and use Fatou's lemma.

Exercise 7.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $A \in \mathcal{F}$, and let $X \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$. Find $\sigma\left(1_{A}\right)$, and Determine $\mathbb{E}\left[X \mid 1_{A}\right]$.

Exercise 8.

Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of i.i.d. random variables, with expectation $\mu \in \mathbb{R}$. Let N be a discrete random variable taking values in \mathbb{N}, and independent of $X_{n}, n \geq 1$, with expectation $m \in \mathbb{R}$.

Define $S_{n}=\sum_{k=1}^{n} X_{k}, S_{0}=0$. Determine $\mathbb{E}\left[S_{N} \mid N\right]$. Deduce $\mathbb{E}\left[S_{N}\right]$.

Exercise 9.

Let X_{1}, X_{2} be independent random variables having Poisson distribution with parameter λ_{1}, λ_{2} respectively.

Find the distribution of $X_{1} \mid X_{1}+X_{2}$. Determine $\mathbb{E}\left[X_{1} \mid X_{1}+X_{2}\right]$.

Exercise 10.

Let X be a Gaussian random variable $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Let Y be a standard Gaussian random variable $\mathcal{N}(0,1)$ independent of X.

Determine $\mathbb{E}[X+Y \mid X]$ and $\mathbb{E}[X \mid X+Y]$.

