Homework #3 – Martingale

Exercise 1. Let $\{X_n\}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1^2] < +\infty$. Take $\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}$, and denote $S_n = \sum_{k=1}^n X_k$, $S_0 = 0$.

- 1. Define $M_n = (S_n n\mathbb{E}[X_1])^2 n\operatorname{Var}(X_1), n \ge 1$. Prove that $\{M_n\}$ is an \mathcal{F}_n -martingale.
- 2. Assume that $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}$. For $u \in \mathbb{R}$, define $M_n^u = \cosh(u)^{-n} e^{uS_n}$. Prove that $\{M_n^u\}$ is an \mathcal{F}_n -martingale.

Exercise 2. Let $\{X_n\}$ be an \mathcal{F}_n -sub-martingale (resp. super-martingale) such that all X_n have same distribution.

- 1. Prove that $\{X_n\}$ is an \mathcal{F}_n -martingale.
- 2. Deduce that for all $a \in \mathbb{R}$, $X_n \wedge a$ and $X_n \vee a$ are martingales.

Exercise 3. (Wald's identity)

Let $\{X_n\}$ be a sequence of i.i.d. random variables in L^1 . Take $\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}, n \ge 1$, and denote $S_n = \sum_{k=1}^n X_k, S_0 = 0$.

1. Let τ be an \mathcal{F}_n -integrable stopping time. Prove that S_{τ} is integrable, and

$$\mathbb{E}[S_{\tau}] = \mathbb{E}[X_1]\mathbb{E}[\tau].$$

2. Prove that if $\mathbb{E}[X_1] \neq 0$ and if τ is an \mathcal{F}_n -stopping time such that $\sup_n |\mathbb{E}[S_{n \wedge \tau}]| < +\infty$, then τ is integrable.

Exercise 4.

Let $\{X_n\}$ be a sequence of i.i.d. random variables such that $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}$. Denote $S_n = \sum_{k=1}^n X_k$, $S_0 = 0$, and $T = \inf\{n \ge 0 : S_n = 1\}$. Prove that $\mathbb{E}[T] = +\infty$.

<u>Hint:</u> One may use the Wald identity.

Exercise 5. (Doob's inequality)

Let $\{X_n\}$ be a non-negative $\{\mathcal{F}_n\}$ -martingale. Denote $\tau = \inf\{n \ge 0 : X_n \ge c\}$, where c > 0.

- 1. Prove that τ is an $\{\mathcal{F}_n\}$ -stopping time.
- 2. Prove that for all $j \leq n$, $\mathbb{E}[X_j \mathbb{1}_{\tau=j}] = \mathbb{E}[X_n \mathbb{1}_{\tau=j}]$.
- 3. Deduce that $\mathbb{E}[X_{\tau} \mathbb{1}_{\tau \leq n}] = \mathbb{E}[X_n \mathbb{1}_{\tau \leq n}]$, and that $c\mathbb{P}(\tau \leq n) \leq \mathbb{E}[X_n \mathbb{1}_{\tau \leq n}]$.
- 4. Prove that $\mathbb{P}(\sup_{k \le n} X_k \ge c) \le \frac{\mathbb{E}[X_n]}{c}$.

Exercise 6.

Let $\{X_n\}_{n\geq 0}$ be a sequence of random variables in L^1 , adapted to a filtration $\{\mathcal{F}_n\}_{n\geq 0}$. Prove that $\{X_n\}_{n\geq 0}$ is an $\{\mathcal{F}_n\}_{n\geq 0}$ -martingale if and only if for all $\{\mathcal{F}_n\}_{n\geq 0}$ -stopping time T bounded, one has $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.

<u>Hint</u>: One may consider for all $n \in \mathbb{N}$ and $B \in \mathcal{F}_n$, $T = n1_{B^c} + (n+1)1_B$.

Exercise 7. (The gambler)

In a favorable game, given $p \in (\frac{1}{2}, 1)$ and a sequence of i.i.d. random variables $\{\varepsilon_n\}$ such that

$$\mathbb{P}(\varepsilon_n = 1) = p, \qquad \mathbb{P}(\varepsilon_n = -1) = 1 - p,$$

where $\varepsilon_n = 1$ if the gambler wins at the *n*-th game and $\varepsilon_n = -1$ if he loses. The initial wealth of the gambler is $x_0 > 0$. Let X_n be his wealth at time *n*, and let C_n be the amount of money he bets at the (n + 1)-th game. The gambler cannot ask for a loan.

The model is as follows: for each $n \in \mathbb{N}$, the gambler chooses C_n measurable with respect to $\mathcal{F}_n = \sigma\{\varepsilon_1, \ldots, \varepsilon_n\}$, with $0 \leq C_n \leq X_n$ and $X_{n+1} = X_n + C_n \varepsilon_{n+1}$.

- 1. (A risky strategy.) Here, we take $C_n = X_n$ for all $n \in \mathbb{N}$.
 - (a) Prove that this strategy maximize $\mathbb{E}[X_n]$ for all n.
 - (b) Define $T = \inf\{n \in \mathbb{N} : X_n = 0\}$. Determine the distribution of T, and deduce that $T < +\infty$ a.s.
 - (c) Prove that $X_n = 0$ for all $n \ge T$, and that $\{X_n\}$ converges to 0 a.s.
- 2. (A cautious strategy.) Here, we take $C_n = \gamma_n X_n$, with $0 < \gamma_n < 1$.
 - (a) For $n \geq 1$, define $M_n = \log(X_n) \sum_{k=0}^{n-1} \left(p \log(1+\gamma_k) + (1-p) \log(1-\gamma_k) \right)$ and $M_0 = \log(x_0)$. Prove that $\{M_n\}$ is an $\{\mathcal{F}_n\}$ -martingale.
 - (b) Prove that the choice $\gamma_n = 2p 1$, for all n, maximize $\mathbb{E}[\log(X_n)]$.
 - (c) For this strategy, that is $\gamma_n = 2p 1$, compute the increasing process $\langle M \rangle_n$ and study the limit in L^2 and almost sure of the sequence $\{\frac{\log(X_n)}{n}\}$.