Homework \#3 - Martingale

Exercise 1. Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}^{2}\right]<+\infty$. Take $\mathcal{F}_{n}=\sigma\left\{X_{1}, \ldots, X_{n}\right\}$, and denote $S_{n}=\sum_{k=1}^{n} X_{k}, S_{0}=0$.

1. Define $M_{n}=\left(S_{n}-n \mathbb{E}\left[X_{1}\right]\right)^{2}-n \operatorname{Var}\left(X_{1}\right), n \geq 1$. Prove that $\left\{M_{n}\right\}$ is an \mathcal{F}_{n}-martingale.
2. Assume that $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=\frac{1}{2}$. For $u \in \mathbb{R}$, define $M_{n}^{u}=\cosh (u)^{-n} e^{u S_{n}}$. Prove that $\left\{M_{n}^{u}\right\}$ is an \mathcal{F}_{n}-martingale.

Exercise 2. Let $\left\{X_{n}\right\}$ be an \mathcal{F}_{n}-sub-martingale (resp. super-martingale) such that all X_{n} have same distribution.

1. Prove that $\left\{X_{n}\right\}$ is an \mathcal{F}_{n}-martingale.
2. Deduce that for all $a \in \mathbb{R}, X_{n} \wedge a$ and $X_{n} \vee a$ are martingales.

Exercise 3. (Wald's identity)

Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. random variables in L^{1}. Take $\mathcal{F}_{n}=\sigma\left\{X_{1}, \ldots, X_{n}\right\}, n \geq 1$, and denote $S_{n}=\sum_{k=1}^{n} X_{k}, S_{0}=0$.

1. Let τ be an \mathcal{F}_{n}-integrable stopping time. Prove that S_{τ} is integrable, and

$$
\mathbb{E}\left[S_{\tau}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}[\tau] .
$$

2. Prove that if $\mathbb{E}\left[X_{1}\right] \neq 0$ and if τ is an \mathcal{F}_{n}-stopping time such that $\sup _{n}\left|\mathbb{E}\left[S_{n \wedge \tau}\right]\right|<+\infty$, then τ is integrable.

Exercise 4.

Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. random variables such that $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=\frac{1}{2}$. Denote $S_{n}=\sum_{k=1}^{n} X_{k}, S_{0}=0$, and $T=\inf \left\{n \geq 0: S_{n}=1\right\}$. Prove that $\mathbb{E}[T]=+\infty$.

Hint: One may use the Wald identity.

Exercise 5. (Doob's inequality)

Let $\left\{X_{n}\right\}$ be a non-negative $\left\{\mathcal{F}_{n}\right\}$-martingale. Denote $\tau=\inf \left\{n \geq 0: X_{n} \geq c\right\}$, where $c>0$.

1. Prove that τ is an $\left\{\mathcal{F}_{n}\right\}$-stopping time.
2. Prove that for all $j \leq n, \mathbb{E}\left[X_{j} 1_{\tau=j}\right]=\mathbb{E}\left[X_{n} 1_{\tau=j}\right]$.
3. Deduce that $\mathbb{E}\left[X_{\tau} 1_{\tau \leq n}\right]=\mathbb{E}\left[X_{n} 1_{\tau \leq n}\right]$, and that $c \mathbb{P}(\tau \leq n) \leq \mathbb{E}\left[X_{n} 1_{\tau \leq n}\right]$.
4. Prove that $\mathbb{P}\left(\sup _{k \leq n} X_{k} \geq c\right) \leq \frac{\mathbb{E}\left[X_{n}\right]}{c}$.

Exercise 6.

Let $\left\{X_{n}\right\}_{n \geq 0}$ be a sequence of random variables in L^{1}, adapted to a filtration $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$. Prove that $\left\{X_{n}\right\}_{n \geq 0}$ is an $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$-martingale if and only if for all $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$-stopping time T bounded, one has $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.

Hint: One may consider for all $n \in \mathbb{N}$ and $B \in \mathcal{F}_{n}, T=n 1_{B^{c}}+(n+1) 1_{B}$.

Exercise 7. (The gambler)

In a favorable game, given $p \in\left(\frac{1}{2}, 1\right)$ and a sequence of i.i.d. random variables $\left\{\varepsilon_{n}\right\}$ such that

$$
\mathbb{P}\left(\varepsilon_{n}=1\right)=p, \quad \mathbb{P}\left(\varepsilon_{n}=-1\right)=1-p,
$$

where $\varepsilon_{n}=1$ if the gambler wins at the n-th game and $\varepsilon_{n}=-1$ if he loses. The initial wealth of the gambler is $x_{0}>0$. Let X_{n} be his wealth at time n, and let C_{n} be the amount of money he bets at the $(n+1)$-th game. The gambler cannot ask for a loan.

The model is as follows: for each $n \in \mathbb{N}$, the gambler chooses C_{n} measurable with respect to $\mathcal{F}_{n}=\sigma\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$, with $0 \leq C_{n} \leq X_{n}$ and $X_{n+1}=X_{n}+C_{n} \varepsilon_{n+1}$.

1. (A risky strategy.) Here, we take $C_{n}=X_{n}$ for all $n \in \mathbb{N}$.
(a) Prove that this strategy maximize $\mathbb{E}\left[X_{n}\right]$ for all n.
(b) Define $T=\inf \left\{n \in \mathbb{N}: X_{n}=0\right\}$. Determine the distribution of T, and deduce that $T<+\infty$ a.s.
(c) Prove that $X_{n}=0$ for all $n \geq T$, and that $\left\{X_{n}\right\}$ converges to 0 a.s.
2. (A cautious strategy.) Here, we take $C_{n}=\gamma_{n} X_{n}$, with $0<\gamma_{n}<1$.
(a) For $n \geq 1$, define $M_{n}=\log \left(X_{n}\right)-\sum_{k=0}^{n-1}\left(p \log \left(1+\gamma_{k}\right)+(1-p) \log \left(1-\gamma_{k}\right)\right)$ and $M_{0}=\log \left(x_{0}\right)$. Prove that $\left\{M_{n}\right\}$ is an $\left\{\mathcal{F}_{n}\right\}$-martingale.
(b) Prove that the choice $\gamma_{n}=2 p-1$, for all n, maximize $\mathbb{E}\left[\log \left(X_{n}\right)\right]$.
(c) For this strategy, that is $\gamma_{n}=2 p-1$, compute the increasing process $<M>_{n}$ and study the limit in L^{2} and almost sure of the sequence $\left\{\frac{\log \left(X_{n}\right)}{n}\right\}$.
