MAC 2313 Exam I, Part II Free Response

Name: ______ Discussion Period _____

Circle your TA's Name

Carl Ye Kyle Adams Christian Austin Michelle Baker

Aditya DeSaha Dylan Connell Abby Owens Julian Michele

Umesha Wijerathne Chi Ding David Maynoldi Michaele Waite

Lezhi Liu

SHOW ALL WORK TO RECEIVE FULL CREDIT

1. Consider points P(0,2,1), Q(3,0,1) and R(3,2,0) and vector $\vec{u} = \langle 1, -3, 2 \rangle$.

(a) (5 points) Find two unit vectors parallel to
$$\overrightarrow{PQ} + \overrightarrow{u}$$

$$\overrightarrow{PQ} = \langle 3-0, 0-2, 1-1 \rangle = \langle 3, -2, 0 \rangle$$
 $\overrightarrow{PQ} + \overrightarrow{u} = \langle 3+1, -2-3, 0+2 \rangle = \langle 4, -5, 2 \rangle$
 $|\overrightarrow{PQ} + \overrightarrow{u}| = \sqrt{(4)^2 + (-6)^2 + (2)^2} = \sqrt{16 + 25 + 4} = \sqrt{45}$

$$V_{1} = \frac{1}{\sqrt{45}} \left\langle 4, -5, 2 \right\rangle
 V_{2} = \frac{-1}{\sqrt{45}} \left\langle 4, -5, 2 \right\rangle
 = \left\langle \frac{4}{\sqrt{45}}, \frac{-5}{\sqrt{45}}, \frac{2}{\sqrt{45}} \right\rangle
 = \left\langle \frac{-4}{\sqrt{45}}, \frac{5}{\sqrt{45}}, \frac{-2}{\sqrt{45}} \right\rangle$$

(b) (5 points) Find the area of the triangle $\triangle PQR$.

$$\overrightarrow{PQ} = \langle 3, -2, 0 \rangle$$
 from (a)

 $\overrightarrow{PR} = \langle 3-0, 2-2, 0-1 \rangle = \langle 3, 0, -1 \rangle$
 $\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} i & j & k \\ 3 & -2 & 0 \\ 3 & 0 & -1 \end{vmatrix} = i(2-0)-j(-3-0)+k(0+6)=\langle 2, 3, 6 \rangle$
 $|\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{4+9+36} = \sqrt{49} = 7$
 $A = \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}| = \frac{7}{2}$

2. (6 points) The position function of a particle is given by $\vec{r}(t) = \langle t^2, 3t, t^2 - 8t \rangle$. When is the speed a minimum?

$$V(t) = r'(t) = \langle 2t, 3, 2t - 8 \rangle$$

$$Speed = |V(t)| = \sqrt{(2t)^2 + (3)^2 + (2t - 8)^2} = \sqrt{4t^2 + \alpha + 4t^2 - 32t + 64}$$

$$= \sqrt{8t^2 - 32t + 73}$$

$$|V(t)|' = \frac{1}{2(8t^2 - 32t + 73)^{-1/2}(16t - 32)}$$

$$O = \frac{1}{2\sqrt{8t^2 - 32t + 73}}$$

3. (6 points) Find the equation of the plane parallel to the vectors $\langle -1, 0, 1 \rangle$ and $\langle 1, -1, 0 \rangle$ containing the point (1, 2, 3)

$$\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{vmatrix} = i(0+1)-j(0-1)+k(1-0) = \langle 1, 1, 1 \rangle$$

$$x + y + z = d$$

 $(1) + (2) + (3) = d$
 $6 = d$
 $x + y + z = 6$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$
 $(1, 1, 1) \cdot (x - 1, y - 2, z - 3) = 0$

4. (6 points) Find the curvature of
$$y = 4x^{3}$$
 at $x = 1$.

$$\mathcal{K} = \frac{|f''|}{(1 + (f')^{2})^{3/2}}$$

$$V(x) = \langle x, 4x^{3}, 0 \rangle$$

$$V(x) = \langle 1, 12x^{2}, 0 \rangle$$

$$V(x) = \langle 1, 12x^{2}, 0 \rangle$$

$$V(x) = \langle 0, 2ux, 0 \rangle$$

$$V(x a)(1) \begin{vmatrix} i & j & k \\ 1 & 12 & 0 \\ 0 & 2u & 0 \end{vmatrix} = i(0 - 0) - j(0 - 0) + k(2u - 0)$$

$$V(x) = \langle 0, 2ux, 0 \rangle$$

$$V(x a)(1) \begin{vmatrix} i & j & k \\ 1 & 12 & 0 \\ 0 & 2u & 0 \end{vmatrix} = i(0 - 0) - j(0 - 0) + k(2u - 0)$$

$$V(x) = \langle 0, 2ux, 0 \rangle$$

$$V($$