Name:	Key	Discussion Period	
	Circle your TA	's Name	
Carl Ye	Deep Kundu	Christian Austin	Michael Coopman
Vincent Holmlund	Aditya DeSaha	Abby Owens	Emmanuel Okon
Erik Shute	Joshua Arroyo	Michael Waite	
Jiun Cho	Satyanath Howladar	Vangmay Jayant	

MAC 2313 Exam I, Part II Free Response

SHOW ALL WORK TO RECEIVE FULL CREDIT

1. (12 points) Let S be the surface consisting of all the points P(x, y, z) for which the distance from P to the x-axis is two times the distance from P to the yz-plane.

(a) Find an equation of S. (Express your answer without radicals) distance from (x,y,z) to $x axis: \sqrt{y^2 + z^2} = D$ distance from (x,y,z) to yz-plane: |x| = d D = 2d $\sqrt{y^2 + z^2} = 2|x|$ $y^2 + z^2 = 4x^2$ $\frac{y^2 + z^2 = 4x^2}{(or -4x^2 + y^2 + z^2 = 0)}$

(b) Discuss traces and identify the surface S.

- Traces parallel to the xy-plane (z = k) are <u>lines</u> if k = 0 $\begin{cases} y^2 = 4\chi^2 \\ y = \pm 2\chi \end{cases}$ and <u>hyperbolas</u> if $k \neq 0$ $y = \pm 2\chi$
- Traces parallel to the yz-plane (x = k) are <u>a point</u> if k = 0 if k =
- Traces parallel to the *xz*-plane (y = k) are <u>lines</u> if k = 0 $= -4\chi^2 + z^2 = -\chi^2$ and <u>hyperbolas</u> if $k \neq 0$ $z = \pm 2\chi$

Therefore, S is a <u>Conl</u>

2. (16 points) Let C be a smooth curve parameterized by $\vec{r}(t) = \langle \cos(2t^2), \sin(2t^2), t^2 \rangle$ for $t \ge 0$, find (simplify your final answers including radicals)

(a)
$$|\vec{r'}(t)| = 2\sqrt{5^{7}t}$$

 $r'(t) = \langle -4t\sin(2t^{2}), 4t\cos(2t^{2}), 2t \rangle$
 $|r'(t)| = \sqrt{16t^{2}\sin^{2}(2t^{2}) + 16t^{2}\cos^{2}(2t^{2}) + 4t^{2}}$
 $= \sqrt{16t^{2} + 4t^{2}} = \sqrt{20t^{2}} = 2\sqrt{5^{7}t}$

(b) the arc length of C from t = 0 to t = 2

$$L = \int_{0}^{2} 2\sqrt{5} t dt$$

= $\sqrt{5} t^{2} |_{0}^{2}$
= $4\sqrt{5} t^{2}$

(c) the curvature of the curve C for any $t\neq 0$

$$\begin{split} \chi &= \frac{|\hat{T}'(t)|}{|r'(t)|} = \left(\frac{8t}{16}\right) \left(\frac{1}{2\sqrt{6}t}\right) = \frac{4}{5} \\ \hat{T}(t) &= \frac{r'(t)}{|r'(t)|} = \frac{1}{2\sqrt{6}t} \left\langle -4t\sin(2t^2), 4t\cos(2t^2), 2t \right\rangle \\ &= \left\langle -\frac{2}{\sqrt{5}}\sin(2t^2), \frac{2}{\sqrt{6}}\cos(2t^2), \frac{1}{6}\right\rangle \\ \hat{T}'(t) &= \left\langle -\frac{8t}{\sqrt{5}}\cos(2t^2), -\frac{8t}{\sqrt{5}}\sin(2t^2), 0 \right\rangle \\ |\hat{T}'(t)| &= \sqrt{\frac{64t^2}{5}\cos^2(2t^2) + \frac{64t^2}{5}\sin^2(2t^2)} \\ &= \sqrt{\frac{64t^2}{5}} = \frac{8t}{\sqrt{5}} \\ &= \sqrt{\frac{64t^2}{5}} = \frac{8t}{\sqrt{5}} \end{split}$$

University of Florida Honor Pledge:

On my honor, I have neither given nor received unauthorized aid doing this exam.