MAC 2313 Exam I, Part II Free Response

Name:	Discussion Period
-	

Circle your TA's Name

Carl Ye	Xiaochen Duan	Aritram Dhar	Michelle Baker
Kushagri Sharma	Arya Memana	Abby Owens	Saketh Narayanan
Umesha Wijerathne	Jacob Levenson	Eros Sunny	Shi Zhou

SHOW ALL WORK TO RECEIVE FULL CREDIT

1. (6 points) Find the parametric equations for the line L passing through the point (3,7,12) and perpendicular to the plane x - y + 3z = 1.

 $\overrightarrow{\nabla} = \langle i, -1, 3 \rangle$ $\hat{r}(+) = \langle 3, 7, 12 \rangle + t \langle 1, -1, 3 \rangle$

 $\chi = 3 + t$ $\gamma = 7 - t$ $\Xi = 12 + 3t$

2. (8 points) Find the parametric equations for the line of intersection of the planes 3x + 2y - 5z = 1 and 3x - 2y - z = 0.Let X = 0 2y - 5z = 1 $2y + 5(\frac{1}{6}) = 1$ $2y = [-\frac{5}{6}$ any point on $-\frac{2y - 2z = 1}{-62z = 1}$ $2y = \frac{1}{6}$ $(0, \frac{1}{12}, -\frac{1}{6})$ $y = \frac{1}{12}$ $(0, \frac{1}{12}, -\frac{1}{6})$ $y = \frac{1}{12}$ $(0, \frac{1}{12}, -\frac{1}{6})$ $y = \frac{1}{12}$ $(0, \frac{1}{12}, -\frac{1}{6})$ $(0, \frac{1}{12}, -\frac{1}{6})$ X = -12t 0r X = -t $Y = \frac{1}{6} - t$ $Y = \frac{1}{6} - 12t$ 3. (6 points) Determine whether the lines

$$L_1: x = 2 + t$$
 $y = 21 + 7t$, $z = 15 + 4t$
 $L_2: x = -5 + 2s$, $y = -18 + 9s$, $z = -11 + 7s$

intersect, are skew, or are parallel. If they intersect determine the point of intersection; if not leave that part of the question blank.

$$2+b=-6+25 \quad 2l+7l=-18+95 \quad 15+4l=-11+75$$

$$+=-7+25 \quad 2l+7(-7+25) = -18+95 \quad 2l-49+145=-18+95 \quad Ck \quad 15+4(-3)=1(+7/2) \quad 3=3-55 \quad$$

4. (8 points) Decompose the vector $\vec{u} = \langle 3, -13 \rangle$ into two orthogonal vectors, one parallel to $\vec{v} = \langle 1, 2 \rangle$ and one perpendicular to \vec{v} .

$$\begin{array}{l} \text{proj}_{V} \vec{v} = \frac{\langle 3, -13 \rangle \cdot \langle 1, 2 \rangle}{1 + 4} \langle 1, 2 \rangle & \vec{v} = \vec{v}_{11} + \vec{v}_{\perp} \\ = \frac{3 - 2b}{5} \langle 1, 2 \rangle & \vec{v}_{\perp} = \vec{v} - \vec{v}_{11} \\ = -\frac{23}{5} \langle 1, 2 \rangle & = \langle 3, -13 \rangle - \langle -\frac{23}{5}, -\frac{4b}{5} \rangle \\ \vec{v}_{\perp} = \langle \frac{38}{5}, -\frac{19}{5} \rangle & \vec{v}_{\perp} = \langle \frac{38}{5}, -\frac{19}{5} \rangle \end{array}$$