

 $x^2 + \left(\frac{-2x}{3}\right)^2 - 44 = 0$

 $x^{2} + 4x^{2} = 44$

Umesha Wijerathne Chi Ding David Maynoldi Michaele Waite

Lezhi Liu

SHOW ALL WORK TO RECEIVE FULL CREDIT

- 1. (12 points) Use Lagrange Multipliers to find extreme values of the function $f(x, y) =$ $3x - 2y$ subject to the constraint $x^2 + y^2 = 44$.
- $\nabla f = \lambda \nabla g$ $\frac{-2(\sqrt{\frac{396}{13}})}{3}$ = y
 $\frac{2\sqrt{396}}{3\sqrt{13}}$ = y
 $\frac{2\sqrt{396}}{3\sqrt{13}}$ = y $\langle 3,-2\rangle = \lambda \langle 2x, 2y \rangle$ $3 = \lambda 2x - 2 = \lambda 2y$ $\frac{3}{2x} = \lambda$ $\frac{-1}{y} = \lambda$ $\frac{-2(-\sqrt{\frac{396}{13}})}{3}$ = y
 $\frac{2\sqrt{396}}{3\sqrt{3}}$ = y
 $\frac{2\sqrt{396}}{3\sqrt{3}}$ = y $\frac{3}{2x} = \frac{-1}{4}$ $-2x = 3y$ $\frac{-2x}{3}$ = 4

$$
f(\varphi_{1}) = \frac{3\sqrt{396}}{\sqrt{13}} + \frac{4\sqrt{396}}{3\sqrt{13}} = \frac{13\sqrt{396}}{3\sqrt{13}} \leftarrow \text{MAX}
$$

$$
9x^2 + 4x^2 = 396
$$

\n $13x^2 = 396$
\n $x = \pm \sqrt{\frac{396}{13}}$
\n $13x^2 = 396$
\n $13x^2 = 396$
\n $13x^2 = 396$
\n $1692 = 3\sqrt{396}$
\n $13\sqrt{13} = 3\sqrt{13}$
\n $13\sqrt{13} = 3\sqrt{13}$
\n $13\sqrt{13} = 3\sqrt{13}$

2. Let $f(x, y) = x - y^2$.

(a) (6 points) Find an equation of the tangent plane to the surface $z = f(x, y)$ at $(1, 2)$.

$$
f_x = 1
$$
 $f_y = -2y$ $f(1,2) = 1 - 4 = -3$
\n $f_x(1,2) = 1$ $f_y(1,2) = -4$
\n $z = f(1,2) + f_x(1,2)(x-1) + f_y(1,2)(y-2)$
\n $z = -3 + (x-1) - 4(y-2)$
\n $z = \frac{x-4y+4}{}$

(b)(5 points) Find the maximum rate of increase/decrease of f at $(1, 2)$, and indicate the direction where it occurs.

$$
\nabla f = \langle 1, -2y \rangle
$$

\n $\nabla f(1,2) = \langle 1, -4 \rangle$
\n $|\langle 1, -4 \rangle| = \sqrt{1+16} = \sqrt{17}$

(c) (5 points) Is there a unit vector \hat{u} so that the rate of change of f at $(1, 2)$ in the direction \hat{u} is 3?

$$
D = \nabla f \cdot u
$$

\n $g = \langle 1, -4 \rangle \cdot \langle x, y \rangle$
\n $g = \langle 1, -4 \rangle \cdot \langle x, y \rangle$
\n $g = x - 4y$
\n $h = x$
\n $g = x - 4y$
\n $h = x$
\n $h = x$
\n $h = 4x$
\n $h =$

 $\frac{y_{\text{es}}}{z}$ No (circle one), because $-\sqrt{7} < 3 < \sqrt{7}$