Name:Discussion PeriodCircle your TA's NameCarl YeXiaochen DuanKushagri SharmaArya MemanaAbby OwensSaketh NarayananUmesha WijerathneJacob LevensonEros SunnyShi Zhou

MAC 2313 Exam II, Part II Free Response

SHOW ALL WORK TO RECEIVE FULL CREDIT

1. (8 points) Find the absolute maximum and minimum values of $f(x, y) = 2x^2 - 8x + y^2 - 8y + 2$ on the closed triangle with vertices (0,0), (0,4), and (2,4).

- 2. Consider the function $f(x, y) = x^2 5xy$.
 - (a) (4 points) Find $\nabla f(x, y)$.

$$\nabla f(X,y) \neq 2x-5y, -5x$$

(b) (4 points) Find the directional derivative at (2, 1) in the direction of $\vec{v} = -\hat{i} + 3\hat{j}$. $|\vec{v}| = \sqrt{1+9} = \sqrt{10^7}$ $\vec{v} = \langle -\vec{10}, \vec{30} \rangle$ $\nabla f(2,1) = \langle 1, -10 \rangle$ $\langle +\vec{10}, \vec{30} \rangle = +\vec{10} - \vec{30} = \frac{29}{\sqrt{10}}$ (c) (4 points) What is the value of the functions maximum rate of change at (2,1)? $|\nabla f(2,1)| = \sqrt{1+10^2} = \sqrt{101}$

(d) (4 points) Find the linearization of f at (2,1).

$$f(2,1) = 4-5(2)(1)$$

= -6

$$\mathcal{F} = f(2,1) - (x-2) - 10(y-1)$$

$$L(x,y) = -b - (x-2) - 10(y-1)$$

(e) (4 points) Use the linearization to approximate f(1.9, 0.9).

L(1.9,0,9) = -6 - (1.9 - 2) - 10(0.9 - 1)= -6+.1+1 = -4.9