

SHOW ALL WORK TO RECEIVE FULL CREDIT

1. (14 points) Let $f(x, y) = x - y^2$.

(a) Find an equation of the tangent plane to the surface z = f(x, y) at (1, 2).

$$\nabla f = \langle 1, -2y \rangle$$

$$\nabla f(1,2) = \langle 1, -4 \rangle$$

$$\langle 1, -4 \rangle \cdot \langle x - 1, y - 2 \rangle + f(1,2) = z$$

$$x - 1 - 4(y - 2) - 3 = z$$

$$z = \underline{x - 4y + 4}$$

(b) Find the maximum rate of increase/decrease of f at (1, 2), and indicate the direction where it occurs.

$$|\nabla f(1,2)| = \sqrt{(1)^2 + (-4)^2} = \sqrt{17}$$

max rate of increase =
$$\sqrt{17}$$
 in the direction $\sqrt{1, -4}$
max rate of decrease = $-\sqrt{17}$ in the direction $\sqrt{-1, 4}$

(c) Is there a unit vector \hat{u} so that the rate of change of f at (1, 2) in the direction \hat{u} is 3? State your reason.

(Yes or No (circle one), because
$$-\sqrt{17} \leq (D_{\hat{\mu}}f(1,2)=3) \leq \sqrt{17}$$

2. (14 points) Find the point in the first quadrant on the hyperbola xy = 36 where the value 1 - 4x - y is a maximum.

(a) Set up the optimization problem as

Maximize
$$f(x, y) = \underbrace{1 - 4 \times - 4}_{\text{Subject to the constraint}} \underbrace{\times 4}_{\text{Subject to the constraint}} \underbrace{\times 4}_{\text{Subject to the constraint}} \underbrace{\times 4}_{\text{Subject to the constraint}}$$

(b) Solve the optimization problem using the Method of Lagrange Multipliers.

Note: You <u>do not</u> need to show the extreme value is a maximum.

$$f = 1-4x - y \quad g = xy - 36$$

$$\nabla f = \langle -4, -1 \rangle \quad \nabla g = \langle y, x \rangle$$

$$q = x^{2}$$

$$\exists 36 = x(4x)$$

$$q = x^{2}$$

$$\exists 3 = x$$

$$\exists 4 = x$$

The maximum value is -23 and it occurs at the point (3, 12)

University of Florida Honor Pledge:

On my honor, I have neither given nor received unauthorized aid doing this exam.

Signature: _____