MAC 2313 Exam II, Part II Free Response

Name: _____ Discussion Period _____

Circle your TA's Name

Carl Ye	Kyle Adams	Christian Austin	Michelle Baker
Aditya DeSaha	Dylan Connell	Abby Owens	Julian Michele
Umesha Wijerathne	Chi Ding	David Maynoldi	Michaele Waite

Lezhi Liu

SHOW ALL WORK TO RECEIVE FULL CREDIT

(14 points) Let E be the solid enclosed by z = √3x² + 3y² and z = 6 in the <u>first octant</u>.
 (a) Write the integral in cylindrical coordinates. (Show your work for the upper bound of r)

$$\iiint_E \sqrt{x^2 + y^2 + z^2} dV = \int_0^{\square} \int_0^{\square}$$

(b) Write the integral in spherical coordinates. (Show your work for the upper bound of a and ϕ)

$$Z = \psi$$

$$P = \psi$$

$$Z = \sqrt{3} r$$

$$P = \psi = \psi$$

$$P = \sqrt{3} r$$

2. (14 points) Let R be the region enclosed by the ellipse $\frac{x^2}{4} + y^2 = 1$ and above the x-axis. Use appropriate change of variables to evaluate

$$\begin{split} & \iint_{R} x^{2} dA \\ X = 2U \\ Y = V \end{split} \qquad \begin{aligned} & J(U, Y) = \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = 2 \end{split}$$

$$\iint_{R} X^{2} dA = \iint_{S} 2(20)^{2} dA$$

$$= 8 \iint_{S} 0^{2} dA$$

$$= 8 \iint_{O} \Gamma^{3} \cos^{2} \Theta dr d\Theta$$

$$= 4 \iint_{O} \Gamma^{3} \cos^{2} \Theta d\Theta \int_{O} \Gamma^{3} dr$$

$$= 4 \left(\Theta + \frac{1}{2} \sin 2\Theta \right) \frac{\Gamma^{4}}{4}$$

$$= \prod_{R} v^{2} dA = \prod_{R} \frac{1}{2} \int_{O} V^{2} dA = \prod_{R} \frac{1}{2} \int_{O}$$

University of Florida Honor Pledge:

On my honor, I have neither given nor received unauthorized aid doing this exam.