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Summary of Integration Formulas

• Fundamental Theorem of Calculus

ˆ b

a

F ′(x) dx = F (b)− F (a)

• Fundamental Theorem of Line Integrals

ˆ
C

∇f · d~r = f(~r(b))− f(~r(a))

• Green’s Theorem (circulation form)

¨

D

curl ~F · k̂ dA =

˛
C

~F · d~r

• Stokes’ Theorem¨

S

curl ~F · n̂ dS =

˛
C

~F · d~r

• Green’s Theorem (flux form)

¨

D

div ~F dA =

˛
C

~F · n̂ ds

• Divergence Theorem

˚

E

div ~F dV =

‹

S

~F · n̂ dS
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NOTE: Be sure to bubble the answers to questions 1−22 on your scantron.

Questions 1 − 22 are worth 5 points each.

1. Let ~F (x, y, z) = 〈x,−2yz, 3xz2〉. Which of the following vectors is orthogonal to curl ~F
at the point (1, 1, 1)?

a. 〈2,−3, 0〉

b. 〈2, 3, 0〉

c. 〈3,−2, 5〉

d. 〈−3,−2, 1〉

e. 〈−3, 2,−1〉

2. Let ~F = 〈x2 − y2,−2xy + y〉. Which of the following statements must be correct?

P. ∇ · ~F = 0.

Q. ~F is conservative.

R.

ˆ
C

~F · d~r = 0 for any smooth curve C.

a. P and Q only

b. Q only

c. P and R only

d. Q and R only

e. P, Q, and R
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3. Evaluate the line integral

ˆ
C

2xey ds, where C is the line segment from (0, 0) to (3, 1).

a. 6

b. 6e

c. 6(e− 1)

d. 6
√

10 (e− 1)

e. 6
√

10

4. Calculate

˛
C

y

2
dx, where C is the counterclockwise oriented curve bounding the triangle

with vertices (0, 0), (4, 0), and (1, 3).

a. −3

b. −6

c. 0

d. 3

e. 6
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5. The surface S is parameterized by ~r(u, v) = 〈2 sin(v) cos(u), 2 sin(v) sin(u), 2 cos(v)〉,
0 ≤ u ≤ 2π and 0 ≤ v ≤ π. Which of the following statements is/are correct?

P. The surface S is the sphere centered at (0, 0, 0) with radius 4.

Q. The vector ~ru(P ) is parallel to the tangent plane to S at the point P .

R. The area of the surface S =

¨

D

dA, where D = {(u, v) | 0 ≤ u ≤ 2π, 0 ≤ v ≤ π}.

a. P only

b. Q only

c. R only

d. P and Q

e. Q and R

6. Find the area of the surface S, where S is the part of the plane 2x + y + 2z = 10 that
lies inside the cylinder x2 + y2 = 16.

a. 48π

b. 18π

c. 16π

d. 12π

e. 24π
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7. If f is a potential function of ~F (x, y) = 〈−y sin(xy),−x sin(xy)− 2y〉 and f(0, 0) = 3,
find f(0, 2).

a. 1

b. 0

c. −1

d. −2

e. −3

8. If ~F = 〈−x, 0, z〉, which of the following must be correct?

P. The flux of ~F across the plane z = 1 is 0.

Q. The flux of ~F across the plane x = 1 is 0.

R. The flux of ~F across a unit sphere is 0.

a. P only

b. Q only

c. R only

d. P and Q only

e. P, Q, and R
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9. Let ~F (x, y, z) = 〈x, y,−2xy〉. Evaluate the line integral

ˆ
C

~F · d~r, where C is the curve

parameterized by ~r(t) = 〈cos t, sin t, 2t〉 , 0 ≤ t ≤ π

2
.

a. −π

b. π

c. 2

d. −2

e. 0

10. If the surface S is parameterized by ~r(u, v) = 〈u, v cos(2u), v sin(2u)〉, find an equation
of the tangent plane to S at the point (π, 1, 0).

a. −2x+ z + π = 0

b. −2x+ z + 2π = 0

c. 2x+ z − 2π = 0

d. 2y + z − π = 0

e. −2y + z + 2π = 0
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11. Which of the following vector fields has the graph below?

a. ~F1(x, y) = −y ı̂+ x̂

b. ~F2(x, y) = ı̂+ ̂

c. ~F3(x, y) = ı̂+ x ̂

d. ~F4(x, y) = x ı̂+ y ̂

e. ~F5(x, y) = y ı̂+ ̂

12. Let ~F (x, y, z) = 〈2y3, 1, ez〉. Find the circulation of ~F along C, where C is the curve
of intersection of the plane y + 2z = 3 and the cylinder x2 + y2 = 4. (Orient C to be
counterclockwise when viewed from above.) By Stoke’s Theorem,

ˆ
C

~F · d~r =

a.

ˆ 2π

0

ˆ 2

0

−6r3 sin2 θ dr dθ

b.

ˆ 2π

0

ˆ 2

0

−12r3 sin2 θ dr dθ

c.

ˆ 2π

0

ˆ 2

0

12r2 cos2 θ dr dθ

d.

ˆ 2π

0

ˆ 2

0

12r3 cos2 θ dr dθ

e.

ˆ 2π

0

ˆ 2

0

−6r2 sin2 θ dr dθ
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13. Which of the following is correct?

a. If ~F is conservative, then

ˆ
C1

~F · d~r =

ˆ
C2

~F · d~r for any two smooth curves C1 and C2.

b. If ~F is conservative, then

¨

S

~F · d~S = 0.

c. If ~F is conservative, then div ~F = 0.

d. If D is a simply connected planar region, then the area of D is

˛
∂D

y

2
dx − x

2
dy, where

∂D is oriented counterclockwise.

e. If ~F = 〈x,−2y, z〉, then

‹

S

~F · d~S = 0, where S is a unit sphere.

14. Set up a double integral for the surface integral

¨

S

(z + 1) dS, where S is the part of

the paraboloid z = x2 + y2 − 1, −1 ≤ z ≤ 5.

a.

ˆ 2π

0

ˆ 1

0

r3
√

4r2 + 1 dr dθ

b.

ˆ 2π

0

ˆ 1

0

r2 dr dθ

c.

ˆ 2π

0

ˆ √
6

0

r2 dr dθ

d.

ˆ 2π

0

ˆ √
6

0

r3
√

4r2 + 1 dr dθ

e.

ˆ 2π

0

ˆ √
6

0

r2
√

4r2 + 1 dr dθ
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15. Find the work done by the force ~F = 〈3x2, 3y2〉 in moving a particle along the
parametric curve ~r(t) = 〈t cos t, t sin t〉 , 0 ≤ t ≤ 2π.

Hint: Is ~F conservative?

a. 8π3

b. 8π

c. 2π

d. 2π3

e. 0

16. Calculate

¨

S

(∇× ~F ) · n̂ dS, where ~F = 〈y,−x, exyz〉 and S is the part of paraboloid

z = 3x2 + 3y2, 0 ≤ z ≤ 6, oriented downward.

a. −2π

b. −4π

c. 0

d. 2π

e. 4π
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17. Let ~F = 〈x3 + y3, y3 + z3, z3 + x3〉 and let S be the sphere centered at (0, 0, 1) with

radius 1. Then the flux of ~F across the surface S is

a.

ˆ 2π

0

ˆ π

0

ˆ 1

0

3ρ4 sinφ dρ dφ dθ

b.

ˆ 2π

0

ˆ π/2

0

ˆ cosφ

0

3ρ4 sinφ dρ dφ dθ

c.

ˆ 2π

0

ˆ π/2

0

ˆ cosφ

0

3ρ2 dρ dφ dθ

d.

ˆ 2π

0

ˆ π/2

0

ˆ 2 cosφ

0

3ρ4 sinφ dρ dφ dθ

e.

ˆ 2π

0

ˆ π

0

ˆ 2 cosφ

0

3ρ2 dρ dφ dθ

18. Which of the following regions is/are simply connected?

D1 = { (x, y) | 1 < x2 + y2 < 9 and x > 0 }

D2 = { (x, y) | x > 0 and y > 0 }

D3 = { (x, y) | y 6= 1 }

a. D1 only

b. D2 only

c. D3 only

d. D1 and D2

e. D2 and D3



10B MAC 2313 Final Exam

19. Let D be the region bounded by y =
√

2x− x2 and the x-axis and let ∂D be its
boundary curve oriented positively. Then

ˆ
∂D

−x2y dx+ xy2 dy =

a.

ˆ π

0

ˆ 2 cos θ

0

−r2 dr dθ

b.

ˆ π/2

0

ˆ 2 cos θ

0

r3 dr dθ

c.

ˆ π/2

0

ˆ 2 cos θ

0

−r3 dr dθ

d.

ˆ π

0

ˆ 2 cos θ

0

r3 dr dθ

e.

ˆ π/2

0

ˆ 2 cos θ

0

r2 dr dθ

20. Let ~F (x, y, z) = (3x− y) ı̂+ (3y− z) ̂+ (3z− x) k̂ and let S be the surface of the solid

bounded by x = 0, x = 2, y = 0, y = 2, z = 0, and z = 2. Find the flux of ~F across S.

a. 54

b. 108

c. 36

d. 72

e. 18
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21. Let ~F (x, y, z) =
〈

cos
(√

x2 + y2 + z2
)
, e

√
xyz, sin3(x)

〉
. Find div (curl ~F ) at the point

(1, 1, 1).

a. 0

b. e

c.
e

2

d.
√
e

e. 1

22. Let ~F (x, y) = 〈x3 − y2, x2 − y3〉. Let D be the region bounded by y = x2, y = 0 and

x = 1, and ∂D be its boundary curve oriented positively. Then the flux of ~F across the

boundary curve ∂D =

˛
∂D

~F · n̂ ds =

a.

ˆ 1

0

ˆ x2

0

(2x+ 2y) dy dx

b.

ˆ 1

0

ˆ 1

x2
(2x+ 2y) dy dx

c.

ˆ 1

0

ˆ x2

0

(3x2 + 3y2) dy dx

d.

ˆ 1

0

ˆ 1

x2
(3x2 − 3y2) dy dx

e.

ˆ 1

0

ˆ x2

0

(3x2 − 3y2) dy dx
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