

- A. Sign your bubble sheet on the back at the bottom in ink.
- B. In pencil, write and encode in the spaces indicated:
	- 1) Name (last name, first initial, middle initial)
	- 2) UF ID number
	- 3) SKIP Section number
- C. Under "special codes" code in the test ID numbers 4, 2.

- D. At the top right of your answer sheet, for "Test Form Code", encode B. $A \bullet C \bullet C$
- E. 1) This test consists of 22 multiple choice questions. The test is counted out of 100 points, and there are 10 bonus points available.
	- 2) The time allowed is 120 minutes.
	- 3) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- G. When you are finished:
	- 1) Before turning in your test check carefully for transcribing errors. Any mistakes you leave in are there to stay.
	- 2) You must turn in your scantron to your discussion leader or exam proctor. Be prepared to show your picture I.D. with a legible signature.
	- 3) The answers will be posted in Canvas within one day after the exam.

University of Florida Honor Pledge:

On my honor, I have neither given nor received unauthorized aid doing this exam.

Signature:

Summary of Integration Formulas

• Fundamental Theorem of Calculus

$$
\int_a^b F'(x) \, dx = F(b) - F(a)
$$

• Fundamental Theorem of Line Integrals

$$
\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))
$$

• Green's Theorem (circulation form)

$$
\iint\limits_{D} \operatorname{curl} \vec{F} \cdot \hat{k} \, dA = \oint_C \vec{F} \cdot d\vec{r}
$$

 \bullet Stokes' Theorem

$$
\iint\limits_{S} \text{curl } \vec{F} \cdot \hat{n} \, dS = \oint_C \vec{F} \cdot d\vec{r}
$$

• Green's Theorem (flux form)

$$
\iint\limits_{D} \operatorname{div} \vec{F} \, dA = \oint_{C} \vec{F} \cdot \hat{n} \, ds
$$

• Divergence Theorem

$$
\iiint\limits_{E} \text{div } \vec{F} \, dV = \oiint\limits_{S} \vec{F} \cdot \hat{n} \, dS
$$

NOTE: Be sure to bubble the answers to questions 1−22 on your scantron.

Questions $1 - 22$ are worth 5 points each.

1. Let $\vec{F}(x, y, z) = \langle x, -2yz, 3xz^2 \rangle$. Which of the following vectors is orthogonal to curl \vec{F} at the point $(1, 1, 1)$?

a. $\langle 2, -3, 0 \rangle$ CURI $\vec{F} = \begin{vmatrix} \vec{a} & \vec{a} & \vec{a} \\ \frac{\vec{a}}{\vec{a} \times \vec{a}} & \frac{\vec{a}}{\vec{a} \times \vec{a}} & \frac{\vec{a}}{\vec{a} \times \vec{a}} \end{vmatrix} = \langle 2y, -3z^2, 0 \rangle$ a. $\langle 2, -3, 0 \rangle$ b. $\langle 2, 3, 0 \rangle$ $Q(1,1,1)$ gives $\{2,-3,0\}$ c. $\langle 3, -2, 5 \rangle$ d.) $\langle -3, -2, 1 \rangle$ e. $\langle -3, 2, -1 \rangle$ $\langle 2,-3,0\rangle \cdot \langle -3,-2,1\rangle = -6+6+0 = 0$ It if you wanted parallel, check which is off by a scalar

2. Let $\vec{F} = \langle x^2 - y^2, -2xy + y \rangle$. Which of the following statements must be correct?

$$
\times P. \nabla \cdot \vec{F} = 0. \langle \frac{dx}{dy} \rangle \cdot \langle x^2 - y^2 \rangle - 2xy + y \rangle = 2x - 2x + 1 = 1
$$

\n
$$
\sqrt{Q. \vec{F} \text{ is conservative.}} \int x^2 - y^2 dx, \quad \int x^2 dy + y dy \text{ are solvable.}
$$

\n
$$
\times R. \int_C \vec{F} \cdot d\vec{r} = 0 \text{ for any smooth curve } C.
$$

\n
$$
\text{closed path}
$$

a. P and Q only b. Q only c. P and R only d. Q and R only e. P, Q, and R

3. Evaluate the line integral \int $2xe^{y} ds$, where C is the line segment from $(0,0)$ to $(3,1)$. $\mathcal{C}_{0}^{(n)}$ $(0,0) \rightarrow (3,1)$ => $r(t) = (3t, t)$ with $0 \le t \le t$ a. 6 $dr = \langle 3, 1 \rangle$ | dr | = $\sqrt{9 + 1}$ = $\sqrt{10}$ b. 6e c. $6(e-1)$ √ $F = 2xe^{y}$ $F(t) = 2(3t)e^{t} = 6te^{t}$ d. 6 $10 (e - 1)$ √ e .) 10 $\int_{c} 2xe^{y} ds = \int_{c}^{1} F\cdot |dr| dt = \int_{c}^{1} \sqrt{10} \cdot 6te^{t} dt$ $\frac{t+e^{t}}{1-e^{t}}$ = 6 $\sqrt{10}\int_{0}^{1}te^{t}dt = 6\sqrt{10}(te^{t}-e^{t})\Big|_{0}^{1}$ = $6\sqrt{10} (e-e) - 6\sqrt{10} (0-1) = 6\sqrt{10}$ $4e^{o} = 1$

4. Calculate \oint \mathcal{C}_{0}^{0} \hat{y} 2 dx , where C is the counterclockwise oriented curve bounding the triangle with vertices $(0, 0), (4, 0),$ and $(1, 3)$.

5. The surface S is parameterized by $\vec{r}(u, v) = \langle 2 \sin(v) \cos(u), 2 \sin(v) \sin(u), 2 \cos(v) \rangle$, $0 \le u \le 2\pi$ and $0 \le v \le \pi$. Which of the following statements is/are correct?

2 \checkmark $\boldsymbol{\mathcal{K}}$ P. The surface S is the sphere centered at $(0,0,0)$ with radius $\boldsymbol{\mathcal{K}}$. $\bigvee Q$. The vector $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P.

1 R. The area of the surface
$$
S = \iint_D dA
$$
, where $D = \{(u, v) | 0 \le u \le 2\pi, 0 \le v \le \pi\}$.

a. P only $b.$ Q only c. R only d. P and Q e. Q and R

 \vec{r} = $\vec{r_u} \times \vec{r_v}$ so by definition $\vec{r_u}$, $\vec{r_v}$ are parallel to a tangent plane

6. Find the area of the surface S, where S is the part of the plane $2x + y + 2z = 10$ that lies inside the cylinder $x^2 + y^2 = 16$. \downarrow

a.
$$
48\pi
$$
 $\hat{A} = \iint_{R} |\vec{r}_{u} \times \vec{r}_{v}| dA$
\nb. 18π
\nc. 16π
\nd. 12π
\ne. $6 - x - \frac{1}{2}y$
\nf. $|\vec{r}_{u}| = \sqrt{1 + \frac{1}{4} + 1} = \sqrt{\frac{4}{4} + \frac{3}{2}}$
\n $\iint_{\sqrt{2}} \frac{3}{2} dxdy = \int_{0}^{2\pi} \int_{0}^{4} \frac{3}{2} rd\theta d\theta = \int_{0}^{2\pi} \frac{3}{4}r^{2} \Big|_{0}^{4} d\theta$
\n $= \int_{0}^{2\pi} 12 d\theta = 24\pi$

7. If f is a potential function of $\vec{F}(x, y) = \langle -y \sin(xy), -x \sin(xy) - 2y \rangle$ and $f(0, 0) = 3$, find $f(0, 2)$. $\int -y\sin(xy) dx = cos(xy) + C$ a. 1 b. 0 $\int -x\sin(xy) - 2y \, dy = \cos(xy) - y^2 + C$ ϵ . -1 d. -2 $f = cos(xy) - y^2 + C$ e. −3 $f(0,0) = 3 = cos(0)-0 + C$ $3 = 1 + C$ $2 = c$ $f = cos(xy) - y^2 + 2$ $f(0,2) = cos(0) - 4 + 2 = -1$

8. If $\vec{F} = \langle -x, 0, z \rangle$, which of the following must be correct?

- P. The flux of \vec{F} across the plane $z = 1$ is 0. $\vec{\mathbf{n}} \cdot {\mathbf{0}} \cdot {\mathbf{0}} \cdot {\mathbf{1}} \cdot {\mathbf{1}}$ Q. The flux of \vec{F} across the plane $x = 1$ is 0. $\vec{r} \cdot \langle 1, 0, 0 \rangle \cdot \langle -\chi, 0, 0 \rangle = -\chi \pm 0$ R. The flux of \vec{F} across a unit sphere is 0. Δv \vec{F} = $\nabla \cdot \vec{F}$ = -4 $+0$ $+1$ = 0
- a. P only
- b. Q only
- c.R only
	- d. P and Q only
	- e. P, Q, and R

FIUX = \oint F· \vec{k} ds = \iint divFdA

9. Let F~ (x, y, z) = ^hx, y, [−]2xyi. Evaluate the line integral ^ˆ F~ · d~r, where C is the curve C π parameterized by ~r(t) = hcost,sin t, 2ti, 0 ≤ t ≤ . 2 a. −π b. π c. 2 d. −2 e. 0

10. If the surface S is parameterized by $\vec{r}(u, v) = \langle u, v \cos(2u), v \sin(2u) \rangle$, find an equation of the tangent plane to S at the point $(\pi, 1, 0)$. $\rightarrow \mathbf{x} = \mathbf{x}$

a.
$$
-2x + z + \pi = 0
$$

\nb. $2x + z + 2\pi = 0$
\nc. $2x + z - 2\pi = 0$
\nd. $2y + z - \pi = 0$
\ne. $-2y + z + 2\pi = 0$
\nf. $x = \langle 1, -2\sqrt{sin(2u)}, 2\sqrt{cos(2u)} \rangle$
\ne. $-2y + z + 2\pi = 0$
\n $\int_{0}^{2} 1 - 2\sqrt{sin(2u)} \cdot 2\sqrt{cos(2u)}, \sin(2u) \rangle$
\nf. $y = \begin{cases} 1 & -2\sqrt{sin(2u)} & 2\sqrt{cos(2u)} \\ 0 & \cos(2u) & \sin(2u) \end{cases}$
\n $\int_{0}^{2} \sqrt{1 - 2\sqrt{sin^2(2u)}} - 2\sqrt{cos^2(2u)} - 2\sqrt{cos^2(2u)} - 2\sqrt{sin^2(2u)}$
\n $\int_{0}^{2} (\pi, 1) = \langle -2, 0, 1 \rangle$
\n $\int_{0}^{2} (\pi, 1) = \langle -2, 0, 1 \rangle = \pi$
\n $\langle -2, 0, 1 \rangle \cdot \langle x - \pi, y - 1, z - 0 \rangle = -2(x - \pi) + z - 0 \Rightarrow$
\n $\int_{0}^{2} (2x + 2\pi + 2\pi + 2\pi) dx = 0$

11. Which of the following vector fields has the graph below?

parallel in y-direction => independence of y plug points! 'M

12. Let $\vec{F}(x, y, z) = \langle 2y^3, 1, e^z \rangle$. Find the circulation of \vec{F} along C, where C is the curve of intersection of the plane $y + 2z = 3$ and the cylinder $x^2 + y^2 = 4$. (Orient C to be counterclockwise when viewed from above.) By Stoke's Theorem,

$$
\int_{C} \vec{F} \cdot d\vec{r} = \int \text{curl } \vec{F} \cdot \vec{\kappa} dS = \int \int \text{curl } \vec{F} \cdot dA
$$
\n
$$
\left(\frac{\partial}{\partial x} \int_{0}^{2\pi} \int_{0}^{2} -6r^{3} \sin^{2}\theta \, dr \, d\theta \right) \qquad \text{curl } \vec{F} = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & 1 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & 1 & \frac{\partial}{\partial z} \end{vmatrix} = \mathbf{i}(0 - \mathbf{0}) - \mathbf{j}(0 - \mathbf{0})
$$
\n
$$
\text{b.} \int_{0}^{2\pi} \int_{0}^{2} -12r^{3} \sin^{2}\theta \, dr \, d\theta
$$
\n
$$
= \langle \mathbf{0} \cdot \mathbf{0} \rangle - \mathbf{6} \mathbf{y}^{2} \rangle
$$
\n
$$
\text{c.} \int_{0}^{2\pi} \int_{0}^{2} 12r^{2} \cos^{2}\theta \, dr \, d\theta
$$
\n
$$
\vec{\kappa} dS = \left| \langle \mathbf{0} \cdot \mathbf{0} \rangle - \mathbf{6} \mathbf{y}^{2} \rangle \right| = \sqrt{(-6\mathbf{y}^{2})^{2}} = -6\mathbf{y}^{2}
$$
\n
$$
\text{d.} \int_{0}^{2\pi} \int_{0}^{2} 12r^{3} \cos^{2}\theta \, dr \, d\theta
$$
\n
$$
\text{e.} \int_{0}^{2\pi} \int_{0}^{2} -6r^{2} \sin^{2}\theta \, dr \, d\theta
$$
\n
$$
\text{S} = \int \int_{0}^{2\pi} \int_{0}^{2} dA = \int_{0}^{2\pi} \int_{0}^{2} -6r^{2} \sin^{2}\theta \, r \, d\theta
$$

13. Which of the following is correct?

a. If \vec{F} is conservative, then $\vec{F} \cdot d\vec{r} =$ $\vec{F} \cdot d\vec{r}$ for any two smooth curves C_1 and C_2 . C_1 C_{2} b. If \vec{F} is conservative, then \iint $\vec{F} \cdot d\vec{S} = 0.$ S c. If \vec{F} is conservative, then div $\vec{F} = 0$. \hat{y} \widehat{dx} – $\frac{x}{2}$ d. If D is a simply connected planar region, then the area of D is \mathcal{Q} \emph{dy} , where 2 2 ∂D ∂D is oriented counterclockwise. e. If $\vec{F} = \langle x, -2y, z \rangle$, then \oint $\vec{F} \cdot d\vec{S} = 0$, where S is a unit sphere. S $A W F = 1 - 2 + 1 = 0$

$$
\not\blacktriangleright \text{F} \text{Constructive} \Rightarrow \text{curl } \mathsf{P} = 0
$$

 $f = 2 + 1$ 14. Set up a double integral for the surface integral \iint $(z + 1)$ dS, where S is the part of S the paraboloid $z = x^2 + y^2 - 1$, $-1 \le z \le 5$. $x^2 + y^2 - 1, -1 \leq z \leq 5.$ explicit surface $r^3\sqrt$ a. $\int^{2\pi}$ \int_0^1 $4r^2+1 dr d\theta$ 0 0 b. $\int^{2\pi}$ \int_0^1 $|\vec{r}_x \times \vec{r}_y| = \sqrt{4x^2 + 4y^2 + 1}$ $r^2 dr d\theta$ 0 0 $\int^{\sqrt{6}}$ $=\sqrt{4r^{2}+1}$ c. $\int^{2\pi}$ $r^2 dr d\theta$ 0 $\boldsymbol{0}$ $\int^{\sqrt{6}}$ $r^3\sqrt$ $\sum_{n=1}^{\infty}$ $4r^2+1\,dr\,d\theta$ $\int \int \left[(x^2 + y^2 - 1) + 1 \right] \cdot \sqrt{4x^2 + 4y^2 + 1} dA$ $\boldsymbol{0}$ 0 $\int^{\sqrt{6}}$ e. $\int^{2\pi}$ $r^2\sqrt{ }$ $4r^2+1 dr d\theta$ $=\int \int r^2 \sqrt{4r^2+1} dA$ 0 0 $-1 = r^2 - 1$ 5=r²-1 = $\int_{0}^{2\pi}\int_{0}^{\sqrt{6}}r^{3}\sqrt{4r^{2}+1} drd\theta$ $Q = Y$ \sqrt{h} = r

15. Find the work done by the force $\vec{F} = \langle 3x^2, 3y^2 \rangle$ in moving a particle along the parametric curve $\vec{r}(t) = \langle t \cos t, t \sin t \rangle$, $0 \le t \le 2\pi$.

 $yes \Rightarrow use \int_{a}^{b} \nabla f \cdot d\vec{r} = f(\vec{r}(s)) - f(\vec{r}(a))$
potential function Hint: Is \vec{F} conservative? a. $\sqrt{8\pi^3}$ $\int 3x^2 dx = x^3 + C$
 $\int 3y^2 dy - y^3 + C$
 $\int 5y^2 dy - y^3 + C$
 $\int 6x^3 + y^3 + C$
 $= 6x^3 + y^3 + C$ b. 8π c. 2π d. $2\pi^3$ e. 0 $f(b) - f(a) = (2\pi \cos(2\pi))^3 + (2\pi \sin(2\pi))^3 - O$

 $= 8\pi^3$

16. Calculate \int S $(\nabla \times \vec{F}) \cdot \hat{n} dS$, where $\vec{F} = \langle y, -x, e^{xyz} \rangle$ and S is the part of paraboloid $z = 3x^2 + 3y^2$, $0 \le z \le 6$, oriented downward.

a.
$$
-2\pi
$$

\nb. -4π
\nc. 0
\nd. 2π
\ne. $\sqrt{r} = \sqrt{2} \cot \sqrt{2} \sin t$, $6 > \pi$
\nd. 2π
\ne. $\sqrt{r} = \sqrt{2} \cot \sqrt{2} \sin t$, $-6 > \sqrt{2} \cot 4\pi$
\n $dr = \sqrt{2} \sin t$, $-\sqrt{2} \cot 4\pi$
\n $dr = \sqrt{2} \sin t$, $-\sqrt{2} \cot 4\pi$
\n $\sqrt{r} = \sqrt{2} \sin t$, $-\sqrt{2} \cot 4\pi$
\n $\sqrt{r} = \sqrt{2} \sin t$
\n $\sqrt{2}r = 2 \sin^2 t$
\n $\sqrt{2}r = 4\pi$

17. Let $\vec{F} = \langle x^3 + y^3, y^3 + z^3, z^3 + x^3 \rangle$ and let S be the sphere centered at $(0, 0, 1)$ with radius 1. Then the flux of \vec{F} across the surface S is

a.
$$
\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta
$$

\nb. $\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\cos \phi} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta$
\nc. $\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta \right)$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2\cos \phi} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta \right)$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2\cos \phi} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta \right)$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta \right)$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta \right)$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta \right)$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta \right)$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta \right)$
\n $\left(\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2$

18. Which of the following regions is/are simply connected?

 $D_1 = \{ (x, y) | 1 < x^2 + y^2 < 9 \text{ and } x > 0 \}$ $D_2 = \{ (x, y) | x > 0 \text{ and } y > 0 \}$ $D_3 = \{ (x, y) | y \neq 1 \}$

20. Let $\vec{F}(x, y, z) = (3x - y)\hat{i} + (3y - z)\hat{j} + (3z - x)\hat{k}$ and let S be the surface of the solid bounded by $x = 0$, $x = 2$, $y = 0$, $y = 2$, $z = 0$, and $z = 2$. Find the flux of \vec{F} across S.

a. 54
$$
fux = \iiint \text{div } F \cdot dA
$$

\nb. 108 $\text{div } F = 3 + 3 + 3 = 9$
\nc. 36 $\frac{1}{2}$
\n $\frac{1}{2}$
\n $\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} d \text{ d}x \text{d}y \text{d}z$
\n $= \int_{0}^{2} \int_{0}^{2} 18 \text{ d}y \text{d}z = \int_{0}^{2} 36 \text{ d}z = 72$

21. Let $\vec{F}(x, y, z) = \langle \cos \left(\sqrt{x^2 + y^2 + z^2} \right), e^{\sqrt{xyz}}, \sin^3(x) \rangle$. Find div (curl \vec{F}) at the point $(1, 1, 1).$

$$
\begin{array}{ll}\n\text{(a)} & \text{(b)} \\
\text{(c)} & \text{(c)} \\
\text{(d)} & \text{(e)} \\
\text{(e)} & \text{(f)} \\
\text{(f)} & \text{(g)} \\
\text{(h)} & \text{(h)} \\
\text{(i)} & \text{(i)} \\
\text{(j)} & \text{(k)} \\
\text{(k)} & \text{(l)} \\
\text{(l)} & \text
$$

22. Let $\vec{F}(x, y) = \langle x^3 - y^2, x^2 - y^3 \rangle$. Let D be the region bounded by $y = x^2$, $y = 0$ and $x = 1$, and ∂D be its boundary curve oriented positively. Then the flux of \vec{F} across the boundary curve $\partial D = \mathcal{Q}$ ∂D $\vec{F} \cdot \hat{n} ds =$

a.
$$
\int_{0}^{1} \int_{0}^{x^{2}} (2x + 2y) dy dx
$$

\nb. $\int_{0}^{1} \int_{x^{2}}^{1} (2x + 2y) dy dx$
\nc. $\int_{0}^{1} \int_{0}^{x^{2}} (3x^{2} + 3y^{2}) dy dx$
\nd. $\int_{0}^{1} \int_{x^{2}}^{1} (3x^{2} - 3y^{2}) dy dx$
\nd. $\int_{0}^{1} \int_{x^{2}}^{1} (3x^{2} - 3y^{2}) dy dx$
\n $\int_{0}^{1} \int_{0}^{x^{2}} (3x^{2} - 3y^{2}) dy dx$
\n $\int_{0}^{1} \int_{0}^{\mathbf{X}^{2}} \mathbf{3} \mathbf{x}^{2} - 3 \mathbf{y}^{2} dy dx$