

- A. Sign your bubble sheet on the back at the bottom in ink.
- **B.** In pencil, write and encode in the spaces indicated:
 - 1) Name (last name, first initial, middle initial)
 - 2) UF ID number
 - 3) SKIP Section number
- C. Under "special codes" code in the test ID numbers 4, 2.

1	2	3	•	5	6	7	8	9	0
1	•	3	4	5	6	7	8	9	0

- **D.** At the top right of your answer sheet, for "Test Form Code", encode B. A \bullet C D E
- E. 1) This test consists of 22 multiple choice questions. The test is counted out of 100 points, and there are 10 bonus points available.
 - 2) The time allowed is 120 minutes.
 - 3) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- **G.** When you are finished:
 - 1) Before turning in your test check carefully for transcribing errors. Any mistakes you leave in are there to stay.
 - 2) You must turn in your scantron to your discussion leader or exam proctor. Be prepared to show your picture I.D. with a legible signature.
 - 3) The answers will be posted in Canvas within one day after the exam.

University of Florida Honor Pledge:

On my honor, I have neither given nor received unauthorized aid doing this exam.

Signature: ____

Summary of Integration Formulas

• Fundamental Theorem of Calculus

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a)$$

• Fundamental Theorem of Line Integrals

$$\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

• Green's Theorem (circulation form)

$$\iint_{D} \operatorname{curl} \vec{F} \cdot \hat{k} \, dA = \oint_{C} \vec{F} \cdot d\vec{r}$$

 \bullet Stokes' Theorem

$$\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} \, dS = \oint_{C} \vec{F} \cdot d\vec{r}$$

• Green's Theorem (flux form)

$$\iint_{D} \operatorname{div} \vec{F} \, dA = \oint_{C} \vec{F} \cdot \hat{n} \, ds$$

• Divergence Theorem

$$\iiint_E \operatorname{div} \vec{F} \, dV = \oiint_S \vec{F} \cdot \hat{n} \, dS$$

NOTE: Be sure to bubble the answers to questions 1-22 on your scantron.

Questions 1 - 22 are worth 5 points each.

1. Let $\vec{F}(x, y, z) = \langle x, -2yz, 3xz^2 \rangle$. Which of the following vectors is <u>orthogonal</u> to curl \vec{F} at the point (1, 1, 1)? a. $\langle 2, -3, 0 \rangle$ $(4r1) \vec{F} = \begin{vmatrix} i & j & j & j \\ j & j & j & j \\ x & -2yz & 3xz^2 \end{vmatrix} = \langle 2y, -3z^2, 0 \rangle$ b. $\langle 2, 3, 0 \rangle$ c. $\langle 3, -2, 5 \rangle$ (2(1, 1, 1)) gives $\langle 2, -3, 0 \rangle$ d. $\langle -3, -2, 1 \rangle$ orthogonal means dot product is zero $\langle 2, -3, 0 \rangle \cdot \langle -3, -2, 1 \rangle = -6t6t0 = 0$ d. $\langle 2, -3, 0 \rangle \cdot \langle -3, -2, 1 \rangle = -6t6t0 = 0$ d. if you wanted parallel, check which is off by a scalar

2. Let $\vec{F} = \langle x^2 - y^2, -2xy + y \rangle$. Which of the following statements must be correct?

a. P and Q only
b. Q only
c. P and R only
d. Q and R only
e. P, Q, and R

3. Evaluate the line integral $\int_{C} 2xe^{y} ds$, where C is the line segment from (0,0) to (3,1). a. 6 (0,0) \rightarrow $(3,1) \Rightarrow$ $r(t) = \langle 3t, t \rangle$ with $0 \leq t \leq t$ b. 6e d. $q = \langle 3, 1 \rangle$ $|dr| = \sqrt{9+1} = \sqrt{10}$ d. $6\sqrt{10}(e-1)$ $F = 2xe^{y}$ $F(t) = 2(3t)e^{t} = 6te^{t}$ $\int_{C} 2xe^{3} ds = \int_{0}^{t} F \cdot |dr| dt = \int_{0}^{t} \sqrt{10} \cdot 6te^{t} dt$ $t + e^{t}$ $f = 6\sqrt{10}$ $\int_{0}^{t} te^{t} dt = 6\sqrt{10}(te^{t} - e^{t})|_{0}^{t}$ $= 6\sqrt{10}(e-e) - 6\sqrt{10}(0-1) = 6\sqrt{10}$ $\frac{4}{2}e^{0} = 1$

4. Calculate $\oint_C \frac{y}{2} dx$, where C is the counterclockwise oriented curve bounding the triangle with vertices (0,0), (4,0), and (1,3).

5. The surface S is parameterized by $\vec{r}(u,v) = \langle 2\sin(v)\cos(u), 2\sin(v)\sin(u), 2\cos(v) \rangle$, $0 \le u \le 2\pi$ and $0 \le v \le \pi$. Which of the following statements is/are correct?

2

K P. The surface S is the sphere centered at (0, 0, 0) with radius K. Q. The vector $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P. K R. The area of the surface $S = \iint_D dA$, where $D = \{(u, v) \mid 0 \le u \le 2\pi, 0 \le v \le \pi\}$. a. P only b. Q only c. R only d. P and Q K P. The surface S is the sphere centered at (0, 0, 0) with radius K. $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P. $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P. $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P. $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P. $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P. $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P. $\vec{r}_u(P)$ is parallel to S at the poi

e. Q and R

6. Find the area of the surface S, where S is the part of the plane 2x + y + 2z = 10 that lies inside the cylinder $x^2 + y^2 = 16$.

a.
$$48\pi$$

b. 18π
c. 16π
d. 12π
e. 24π
 1π
 1π

7. If f is a potential function of $\vec{F}(x,y) = \langle -y\sin(xy), -x\sin(xy) - 2y \rangle$ and f(0,0) = 3, find f(0,2).

8. If $\vec{F} = \langle -x, 0, z \rangle$, which of the following must be correct?

- P. The flux of \vec{F} across the plane z = 1 is 0. $\vec{n} \cdot \langle 0, 0, 1 \rangle \cdot \langle -\chi, 0, 2 \rangle = \neq \neq 0$ Q. The flux of \vec{F} across the plane x = 1 is 0. $\vec{n} \cdot \langle 1, 0, 0 \rangle \cdot \langle -\chi, 0, 2 \rangle = -\chi \neq 0$ R. The flux of \vec{F} across a unit sphere is 0. $\text{Kiv } F = \nabla \cdot F = -1 \neq 0 \neq 1 = 0$
- a. P only
- b. Q only
- c. R only
 - d. P and Q only
- e. P, Q, and R

Flux = § F. nds = SS div = dA

9. Let
$$\vec{F}(x, y, z) = \langle x, y, -2xy \rangle$$
. Evaluate the line integral $\int_{C} \vec{F} \cdot d\vec{r}$, where C is the curve
parameterized by $\vec{r}(t) = \langle \cos t, \sin t, 2t \rangle$, $0 \le t \le \frac{\pi}{2}$.

d $\mathbf{r} = \langle -\sin t_{\perp} \cos t, 2 \rangle$

a. $-\pi$
b. π $\mathbf{F} = \langle \cos t, 5 \ln t, -2 \cosh t \sin t \rangle$

c. 2

d $\mathbf{l} - 2$
e. 0

f $\cdot d\mathbf{r} = -\cos t \sinh t + \cos t \sinh t - 4 \cosh t \sinh t$

f $\cdot d\mathbf{r} = -\cos t \sinh t dt = \int_{0}^{T/2} -4 \cosh t \sin t dt = -2u^{2} \int_{0}^{T/2} = -2\sin^{2} t \int_{0}^{T/2} = -2(1-0) = -2$

10. If the surface S is parameterized by $\vec{r}(u, v) = \langle u, v \cos(2u), v \sin(2u) \rangle$, find an equation of the tangent plane to S at the point $(\pi, 1, 0)$. \neg $\kappa = \chi = \pi$ ware (am)

_

a.
$$-2x + z + \pi = 0$$

b) $-2x + z + 2\pi = 0$
c. $2x + z - 2\pi = 0$
d) $2y + z - \pi = 0$
e. $-2y + z + 2\pi = 0$
f) $r_{v} = \langle 0, \cos(2u), \sin(2u) \rangle$
e. $-2y + z + 2\pi = 0$
f) $r_{v} = \langle 0, \cos(2u), \sin(2u) \rangle$
e. $-2y + z + 2\pi = 0$
f) $r_{v} = \langle 0, \cos(2u), \sin(2u) \rangle$
e. $-2y + z + 2\pi = 0$
f) $r_{v} = \langle 0, \cos(2u), \sin(2u) \rangle$
e. $-2y + z + 2\pi = 0$
f) $r_{v} = \langle 0, \cos(2u) \rangle$
e. $-2v + z + 2\pi = 0$
f) $r_{v} = \langle -2v, -\sin(2u), \cos(2u) \rangle$
f) $r_{v} (2u) - 2v\cos^{2}(2u) - \frac{1}{2}v\cos^{2}(2u)$
f) $r_{v} (2u) - \frac{1}{2}v\cos^{2}(2u) - \frac{1}{2}v\cos^{2}(2u) - \frac{1}{2}v\cos^{2}(2u)$
f) $r_{v} (2u) - \frac{1}{2}v\cos^{2}(2u) - \frac{1}{2}v\cos^{2}(2u) - \frac{1}{2}v\cos$

11. Which of the following vector fields has the graph below?

parallel in y-direction => independence of y plug in points!

12. Let $\vec{F}(x, y, z) = \langle 2y^3, 1, e^z \rangle$. Find the circulation of \vec{F} along C, where C is the curve of intersection of the plane y + 2z = 3 and the cylinder $x^2 + y^2 = 4$. (Orient C to be counterclockwise when viewed from above.) By Stoke's Theorem,

$$\int_{C} \vec{F} \cdot d\vec{r} = \int curl \, \vec{F} \cdot \vec{n} \, dS = \iint [curl F| \, dA$$

$$(a) \int_{0}^{2\pi} \int_{0}^{2} -6r^{3} \sin^{2} \theta \, dr \, d\theta \qquad curl F = \begin{bmatrix} a & a & a & y & b & a \\ 2y^{3} & 4 & e^{2} \end{bmatrix} = i(0-0) - j(0-0) + k(0-6y^{2})$$

$$b. \int_{0}^{2\pi} \int_{0}^{2} -12r^{3} \sin^{2} \theta \, dr \, d\theta \qquad = \langle 0, 0, -6y^{2} \rangle$$

$$c. \int_{0}^{2\pi} \int_{0}^{2} 12r^{2} \cos^{2} \theta \, dr \, d\theta \qquad \vec{n} \, dS = [\langle 0, 0, -6y^{2} \rangle] = \sqrt{(-6y^{2})^{2}} = -6y^{2}$$

$$d. \int_{0}^{2\pi} \int_{0}^{2} -6r^{2} \sin^{2} \theta \, dr \, d\theta \qquad SJ - 6y^{2} \, dA = \int_{0}^{2\pi} \int_{0}^{2} -6r^{2} \sin^{2} \theta \, dr \, d\theta$$

13. Which of the following is correct?

a. If
$$\vec{F}$$
 is conservative, then $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$ for any two smooth curves C_1 and C_2 .
only if C_4 , C_2 have the same endpoints
b. If \vec{F} is conservative, then $\iint_S \vec{F} \cdot d\vec{S} = 0$.
 $S = \iiint_S div F \cdot dV$ and $div F \neq O$
c. If \vec{F} is conservative, then div $\vec{F} = 0$.
Not necessarily
d. If D is a simply connected planar region, then the area of D is $\oint_{\partial D} \frac{y}{2} dx - \frac{x}{2} (y)$, where ∂D is oriented counterclockwise.
(e) If $\vec{F} = \langle x, -2y, z \rangle$, then $\oiint_S \vec{F} \cdot d\vec{S} = 0$, where S is a unit sphere.
 $S = \iiint_S div F \cdot dV$
 $div F = 1 - 2 + 1 = 0$

f = z + 114. Set up a double integral for the surface integral $\iint_{S} (z+1) \, dS$, where S is the part of the paraboloid $z = x^2 + y^2 - 1$, $-1 \le z \le 5$. $= \int_{T} f(r(z)) \cdot [\vec{r}_x \times \vec{r}_y] \, dA$ Explicit Starface a. $\int_{0}^{2\pi} \int_{0}^{1} r^3 \sqrt{4r^2 + 1} \, dr \, d\theta$ b. $\int_{0}^{2\pi} \int_{0}^{1} r^2 \, dr \, d\theta$ c. $\int_{0}^{2\pi} \int_{0}^{\sqrt{6}} r^2 \, dr \, d\theta$ e. $\int_{0}^{2\pi} \int_{0}^{\sqrt{6}} r^3 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ for $r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$ 15. Find the work done by the force $\vec{F} = \langle 3x^2, 3y^2 \rangle$ in moving a particle along the parametric curve $\vec{r}(t) = \langle t \cos t, t \sin t \rangle$, $0 \le t \le 2\pi$.

Hint: Is \vec{F} conservative? $y_{e^{5}} \Rightarrow u_{se} \int_{a}^{b} \nabla f \cdot d\vec{r} = f(\vec{F}(\omega)) - f(\vec{F}(a))$ (a) $8\pi^{3}$ (b) 8π (c) 2π (c) $2\pi^{3}$ (c) $2\pi^{3}$ (c) $2\pi^{3}$ (c) $2\pi^{3}$ (c) $3y^{2} dy = y^{3} + C$ (c) $f(x) = (x^{3} + y^{3} + C)$ (c) $f(x) = (x^{3} + y^{$

$$= 8\pi^{3}$$

16. Calculate
$$\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, dS$$
, where $\vec{F} = \langle y, -x, e^{xyz} \rangle$ and S is the part of paraboloid $z = 3x^2 + 3y^2, \ 0 \le z \le 6$, oriented downward.

-

a.
$$-2\pi$$

b. -4π
c. 0
d. 2π
 $\vec{r} = \langle \sqrt{2} \cos t, \sqrt{2} \sin t, 6 \rangle$ 1 orientation
 $\vec{r} = \langle -\sqrt{2} \cos t, -\sqrt{2} \sin t, -6 \rangle$ J orientation
 $e^{4\pi}$
 $dr = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $F = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $F = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $F = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $F = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $F = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \cos t, 0 \rangle$
 $f = \langle \sqrt{2} \sin t, -\sqrt{2} \sin t, 0 \rangle$
 $f = \langle \sqrt{2} \sin$

17. Let $\vec{F} = \langle x^3 + y^3, y^3 + z^3, z^3 + x^3 \rangle$ and let S be the sphere centered at (0, 0, 1) with radius 1. Then the flux of \vec{F} across the surface S is

a.
$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta$$
Flux = $SSS \, div F \cdot dV$

$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\cos \phi} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta$$

$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2\cos \phi} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$X^{2} + y^{2} + (z-1)^{2} = \rho = 1$$

$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\cos \phi} 3\rho^{2} \, d\rho \, d\phi \, d\theta$$

$$X^{2} + y^{2} + z^{2} - 2z + 1 = 1$$

$$\rho^{2} - 2\rho \cos \phi = 0$$

$$\rho - 2\cos \phi = 0$$

$$\rho - 2\cos \phi = 0$$

18. Which of the following regions is/are simply connected?

$$D_1 = \{ (x, y) \mid 1 < x^2 + y^2 < 9 \text{ and } x > 0 \}$$
$$D_2 = \{ (x, y) \mid x > 0 \text{ and } y > 0 \}$$
$$D_3 = \{ (x, y) \mid y \neq 1 \}$$

$\int_{\partial D} -x^2 y dx + x y^2 dy = \mathbf{Q}$	$\int \frac{dQ}{dx} - \frac{dP}{dy} = \int y^2 + \chi^2$	= Sr ² rdrd0
a. $\int_0^{\pi} \int_0^{2\cos\theta} -r^2 dr d\theta$	$y = \sqrt{2x - x^2}$ $y^2 = 2x - x^2$	
$ \underbrace{b}_{0} \int_{0}^{\pi/2} \int_{0}^{2\cos\theta} r^{3} dr d\theta $ c. $ \int_{0}^{\pi/2} \int_{0}^{2\cos\theta} -r^{3} dr d\theta $	$x^{2}-2x + 1 + y^{2} = 1 =$ $(x-1)^{2} + y^{2} = 1$	$r^{2} - 2rco^{3}\Theta = O$ $r - 2co^{3}\Theta = O$
d. $\int_0^{\pi} \int_0^{2\cos\theta} r^3 dr d\theta$ e. $\int_0^{\pi/2} \int_0^{2\cos\theta} r^2 dr d\theta$		$r = 2\cos \Theta$
J U J U		

20. Let $\vec{F}(x, y, z) = (3x - y)\hat{i} + (3y - z)\hat{j} + (3z - x)\hat{k}$ and let S be the surface of the solid bounded by x = 0, x = 2, y = 0, y = 2, z = 0, and z = 2. Find the flux of \vec{F} across S.

a. 54
flux =
$$\int \int dx F \cdot dA$$

b. 108
c. 36
diw F = 3 + 3 + 3 = 9
d. 72
e. 18
 $\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} 4 dx dy dz$
= $\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} 18 dy dz = \int_{0}^{2} 36 dz = 72$

21. Let $\vec{F}(x, y, z) = \left\langle \cos\left(\sqrt{x^2 + y^2 + z^2}\right), e^{\sqrt{xyz}}, \sin^3(x) \right\rangle$. Find div (curl \vec{F}) at the point (1, 1, 1).

a.) 0
b. e
c.
$$\frac{e}{2}$$

d. \sqrt{e}
e. 1

22. Let $\vec{F}(x,y) = \langle x^3 - y^2, x^2 - y^3 \rangle$. Let *D* be the region bounded by $y = x^2$, y = 0 and x = 1, and ∂D be its boundary curve oriented positively. Then the flux of \vec{F} across the boundary curve $\partial D = \oint_{\partial D} \vec{F} \cdot \hat{n} \, ds =$

a.
$$\int_{0}^{1} \int_{0}^{x^{2}} (2x + 2y) \, dy \, dx$$

b.
$$\int_{0}^{1} \int_{x^{2}}^{1} (2x + 2y) \, dy \, dx$$

c.
$$\int_{0}^{1} \int_{0}^{x^{2}} (3x^{2} + 3y^{2}) \, dy \, dx$$

flux = $\int \int div F \cdot dA$
div F = $3x^{2} - 3y^{2}$
e.
$$\int_{0}^{1} \int_{0}^{x^{2}} (3x^{2} - 3y^{2}) \, dy \, dx$$

flux = $\int \int \int div F \cdot dA$
div F = $3x^{2} - 3y^{2}$
flux = $\int \int \int \int div F \cdot dA$
div F = $3x^{2} - 3y^{2}$