

FALL 2024 Version A

FINAL EXAM

A. Sign your bubble sheet on the back at the bottom <u>in ink</u> .										
B. In pencil, write and encode in the spaces indicated:										
1) Name (last name, first initial, middle initial)										
2) UF ID number										
3) SKIP Section number										

C.	Under '	nder "special codes"				code in the test ID					numbers 4,	
	1	2	3		5	6	7	8	9	0		

2 3 4 5 6 7 8 9 0

D. At the top right of your answer sheet, for "Test Form Code", encode A.

• B C D E

E. 1) This test consists of 18 multiple choice questions

- 2) The time allowed is 120 minutes.
- 3) You may write on the test.
- **4)** Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- **G.** When you are finished:
 - 1) Before turning in your test **check carefully for transcribing errors**. Any mistakes you leave in are there to stay.
 - 2) You must turn in your scantron and tearoff sheets to your discussion leader or exam proctor. Be prepared to show your picture I.D. with a legible signature.
 - 3) The answers will be posted in Canvas within one day after the exam.

Summary of Integration Formulas

• Fundamental Theorem of Calculus

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

• Fundamental Theorem of Line Integrals

$$\int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

• Green's Theorem (circulation form)

$$\iint\limits_{D} \operatorname{curl} \vec{F} \cdot \hat{k} \, dA = \oint\limits_{C} \vec{F} \cdot d\vec{r}$$

• Stokes' Theorem

$$\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} \, dS = \oint_{C} \vec{F} \cdot d\vec{r}$$

• Green's Theorem (flux form)

$$\iint\limits_{D} \operatorname{div} \vec{F} \, dA = \oint\limits_{C} \vec{F} \cdot \hat{n} \, ds$$

• Divergence Theorem

$$\iiint\limits_{E} \operatorname{div} \vec{F} \, dV = \iint\limits_{S} \vec{F} \cdot \hat{n} \, dS$$

Questions 1 - 18 are worth 6 points each.

1. Let *C* be a simple, smooth, closed curve in the *xy*-plane, for how many of the following vector fields will the circulation $\oint_C \vec{F} \cdot d\vec{r}$ be equal to zero?

i.
$$\vec{F}(x, y) = \langle 3, \pi^2 \rangle$$

ii.
$$\vec{F}(x, y) = \langle 2y + x^2, \sin y + 2x \rangle$$

iii.
$$\vec{F}(x, y) = \langle x + y, x - y \rangle$$

iv.
$$\vec{F}(x, y) = \langle \cos y, \sin x \rangle$$

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4
- 2. Let *C* be a line segment with initial point (1,2) and terminal point (-3,5). Compute the line integral $\int_C 2x y \, ds$.
 - (a) 0
 - (b) $-\frac{55}{2}$
 - (c) $-\frac{11}{2}$
 - (d) $-\frac{33}{2}$
 - (e) $-\frac{25}{2}$

- 3. If $\vec{F}(x, y, z) = \langle xe^y, z \ln x, xyz \rangle$, then which of the following vectors is parallel to $\nabla \times \vec{F}$ at the point (1, 0, -2).
 - (a) (2,0,3)
 - (b) (2,1,0)
 - (c) (0,0,1)
 - (d) $\langle 2, -1, 0 \rangle$
 - (e) none of the above
- 4. Evaluate $\int_C (e^x y + x^2) dx + (e^x + \cos(y)) dy$ where *C* is any smooth curve from (1, 0) to (0, π).
 - (a) $\frac{2}{3}$
 - (b) $\pi \frac{1}{3}$
 - (c) 0
 - (d) π
 - (e) $-\pi$

- 5. Let *S* be the part of the plane z = 4 + 2x + 6y defined over the region $\{(x, y) | 0 \le x \le 2, 0 \le y \le 1\}$ and oriented so that the *z* component of the normal vector is positive. If $\vec{F}(x, y, z) = \langle z, z, 12xy \rangle$, what is the flux of \vec{F} across *S*?
 - (a) 0
 - (b) -132
 - (c) -144
 - (d) -84
 - (e) -72
- 6. Let *S* be the surface defined by $\vec{r}(u,v) = \langle 2u, -3v, v 2u \rangle$ with domain $\{(u,v) | 0 \le u \le 1, -2 \le v \le 0, \text{ then compute } \iint_S xy + 2z \, dS$.
 - (a) $14\sqrt{76}$
 - (b) $6\sqrt{76}$
 - (c) $12\sqrt{76}$
 - (d) $20\sqrt{19}$
 - (e) none of the above

- 7. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = \langle ye^{xy}, xe^{xy} \rangle$ and if the curve C is $\vec{r}(t) = t\hat{i} 8\hat{j}, 0 \le t \le 1$.
 - (a) $e^{-8} 2$
 - (b) 2
 - (c) 0
 - (d) $e^{-8} 1$
 - (e) None of the above
- 8. Evaluate $\int_C \sin(x) dx + z \cos(y) dy + \sin(y) dz$ where *C* is the ellipse $4x^2 + 9y^2 = 36$, oriented clockwise.
 - (a) 4
 - (b) 24
 - (c) 0
 - (d) 9
 - (e) 1

9. Find the surface area of the part of the surface $z = x^2 + y^2$ below the plane z = 9.

(a)
$$\frac{\pi}{6}(3\sqrt{3}-1)$$

(b)
$$\frac{\pi}{6}(3\sqrt{3}-2\sqrt{2})$$

(c)
$$\frac{\pi}{6}(37^{3/2}-1)$$

(d)
$$\frac{\pi}{6}(29^{3/2}-1)$$

(e)
$$\frac{\pi}{6}(27^{3/2}-1)$$

10. Compute the tangent plane to the surface parametrized by $\vec{r} = u\hat{i} + uv\hat{j} + (u + v)\hat{k}$ at the point (1,2,3).

(a)
$$3x + 2y + z = 10$$

(b)
$$x - y + z = 2$$

(c)
$$x + 2y + 3z = 14$$

(d)
$$\langle x, y, z \rangle = \langle 1 + u, 2 + uv, 3 + u + v \rangle$$

(e)
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$

11. Let $\vec{F}(x, y, z) = \langle 2y^3, 1, e^z \rangle$. Use Stokes' Theorem to set up an integral to find the circulation of \vec{F} along C, where C is the curve of intersection of the plane y + 2z = 3 and the cylinder $x^2 + y^2 = 4$. Orient C to be counterclockwise when viewed from above.

(a)
$$\int_0^{2\pi} \int_0^2 -12r^3 \sin^2 \theta \, dr \, d\theta$$

(b)
$$\int_{0}^{2\pi} \int_{0}^{2} 12r^{2} \cos^{2} \theta \, dr \, d\theta$$

(c)
$$\int_0^{2\pi} \int_0^2 12r^3 \cos^2 \theta \, dr \, d\theta$$

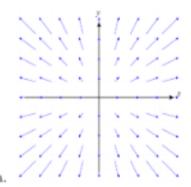
(d)
$$\int_{0}^{2\pi} \int_{0}^{2} -6r^{2} \sin^{2}\theta \, dr \, d\theta$$

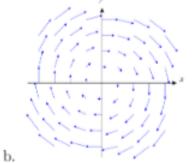
(e)
$$\int_0^{2\pi} \int_0^2 -6r^3 \sin^2 \theta \, dr \, d\theta$$

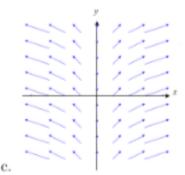
- 12. Suppose $\vec{F}(x, y, z) = \langle xy^2, yz^2, zx^2 \rangle$ and let S be the union of the upper hemisphere of radius 2 centered at the origin with the disc of radius 2 in the xy-plane centered at the origin such that S is positively oriented. Evaluate $\iint_S \vec{F}(x, y, z) \cdot d\vec{S}$.
 - (a) 0
 - (b) $\frac{8\pi^2}{3}$
 - (c) $\frac{16\pi^2}{3}$
 - (d) $\frac{64\pi}{5}$
 - (e) $\frac{128\pi}{5}$

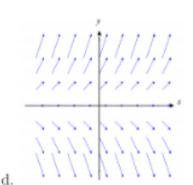
- 13. Find the work done by the force field $\vec{F}(x,y) = \langle x,y+2 \rangle$ in moving an object along an arch of the cycloid $r(t) = \langle t \sin t, 1 \cos t \rangle$, $0 \le t \le 2\pi$.
 - (a) π^2
 - (b) $2\pi^2$
 - (c) $3\pi^2$
 - (d) $4\pi^2$
 - (e) None of the Above
- 14. Let f(x, y, z) be a potential function of the vector field $\vec{F} = \langle 2x, z \cos(yz), y \cos(yz) \rangle$. If f(0, 0, 0) = -1, find $f\left(2, 1, \frac{\pi}{2}\right)$
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 5

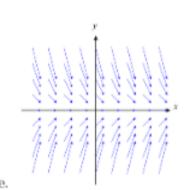
15. Sketch the gradient field of $f(x, y) = x - y^2$.











- 16. Let $\vec{F} = \langle yz + 1, xz + 1, xy + 1 \rangle$. Which of the following statements must be correct?
 - P. \vec{F} is conservative.
 - Q. $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$ for any two smooth curves C_1 and C_2 .
 - R. The circulation of \vec{F} along a smooth curve is zero.
 - a. P and Q only
 - b. P and R only
 - c. Q and R only
 - d. P, Q, and R
 - e. P only

17. Let $\vec{F} = \langle z - 2y, z + 2x, e^{-xy} \rangle$ and S be the part of the paraboloid $z = 9 - x^2 - y^2$ with $z \ge 0$ and oriented so that z component of the normal vector is positive. Calculate

$$\iint\limits_{S} \nabla \times \vec{F} \cdot \vec{n} \, dS =$$

- a. 9π
- b. 18π
- c. 36π
- d. 48π
- e. 0
- 18. You attend the University of
 - (a) Florida
 - (b) Missouri
 - (c) Arkansas
 - (d) Kansas