

## FINAL EXAM

A. Sign your bubble sheet on the back at the bottom in ink.

- **B.** In pencil, write and encode in the spaces indicated:
  - 1) Name (last name, first initial, middle initial)
  - **2)** UF ID number
  - 3) SKIP Section number
- **C.** Under "special codes" code in the test ID numbers 4, 1.
- D. At the top right of your answer sheet, for "Test Form Code", encode A.
  B C D E
- E. 1) This test consists of 18 multiple choice questions
  - 2) The time allowed is 120 minutes.
  - **3)** You may write on the test.
  - **4)** Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

## F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- **G.** When you are finished:
  - **1)** Before turning in your test **check carefully for transcribing errors**. Any mistakes you leave in are there to stay.
  - **2)** You must turn in your scantron and tearoff sheets to your discussion leader or exam proctor. Be prepared to show your picture I.D. with a legible signature.
  - 3) The answers will be posted in Canvas within one day after the exam.

## **Summary of Integration Formulas**

• Fundamental Theorem of Calculus

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a) \qquad \checkmark$$

• Fundamental Theorem of Line Integrals Conservative

$$\int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

• Green's Theorem (circulation form)

$$\iint_{D} \operatorname{curl} \vec{F} \cdot \hat{k} \, dA = \oint_{C} \vec{F} \cdot d\vec{r}$$

• Stokes' Theorem

$$\iint \operatorname{curl} \mathbf{F} \, \mathrm{d}\mathbf{\hat{S}} = \iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} \, \mathrm{d}S = \oint_{C} \vec{F} \cdot \mathrm{d}\vec{r}$$

• Green's Theorem (flux form) 2D

$$\iint_{D} \operatorname{div} \vec{F} \, dA = \oint_{C} \vec{F} \cdot \hat{n} \, ds$$

• Divergence Theorem 31

$$\iiint_E \operatorname{div} \vec{F} \, dV = \bigoplus_S \vec{F} \cdot \hat{n} \, dS$$

## Questions 1 – 18 are worth 6 points each.

1. Let *C* be a simple, smooth, closed curve in the *xy*-plane, for how many of the follow-



2. Let C be a line segment with initial point (1,2) and terminal point (-3,5). Compute the line integral  $\int_{C} 2x - y \, ds$ . (a) 0  $r = \langle 1 - 4t, 2 + 3t \rangle$   $r' = \langle -4, 3 \rangle$ (b)  $-\frac{55}{2}$   $|r'| = \sqrt{16 + 9} = 5$ (c)  $-\frac{11}{2}$   $5 \int_{0}^{1} 2(1 - 4t) - (2 + 3t) \, dt = 5 \int_{0}^{1} -11t \, dt = \frac{-55t^{2}}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (d)  $-\frac{33}{2}$ (e)  $-\frac{25}{2}$  3. If  $\vec{F}(x, y, z) = \langle xe^{y}, z \ln x, xyz \rangle$ , then which of the following vectors is parallel to  $\nabla \times \vec{F}$ at the point (1, 0, -2).  $\forall x F = \begin{vmatrix} i & j & k \\ \partial x & \partial y & \partial z \\ xe^{y} & z \ln(x) & xyz \end{vmatrix}$ of  $f = by \rightarrow (a)(2, 0, 3)$   $a \quad scallar$  of -1 (b)  $\langle 2, 1, 0 \rangle$   $(c) \langle 0, 0, 1 \rangle$ (

(e) none of the above

4. Evaluate 
$$\int_{C} (e^{x}y + x^{2}) dx + (e^{x} + \cos(y)) dy$$
 where C is any smooth curve from (1,0) to  
(0,  $\pi$ ).  
(a)  $\frac{\partial p}{\partial y} = e^{x} = \frac{\partial Q}{\partial \chi} \implies F = \langle P, Q \rangle$  is conservative  $\implies$   
(a)  $\frac{2}{3}$  we can use the fundamental than of line integrals  
(b)  $\pi - \frac{1}{3}$   $\int P dx = \int e^{x}y + x^{2} dx = e^{x}y + \frac{1}{3}x^{3} + C$   
(c)  $0$   $\int Q dy = \int e^{x} + \cos(y) dy = ye^{x} + \sin(y) + C$   
(d)  $\pi$   $f = ye^{x} + \frac{1}{3}x^{3} + \sin(y) + C$   
(e)  $-\pi$   $f(0, \pi) - f(1, 0) = (\pi) - (\frac{1}{3}) = \pi - \frac{1}{3}$ 

5. Let 5 be the part of the plane 
$$z = 4 + 2x + 6y$$
 defined over the region  $[(x, y)| 0 \le x \le 2, 0 \le y \le 1]$  and oriented so that the z component of the normal vector is positive.  
If  $(x, y, z) = (z, z, 12xy)$ , what is the flux of  $f$  across 5?  
Flux =  $\iint F \cdot A \, dS = \iint F \cdot \langle -g_X, -g_Y, 1 \rangle \, dS$   
is do that one.  
It met knowl (a) 0 plane :  $z = 4 + 2x + 6y$  when upon have an explicit  
plane :  $z = 4 + 2x + 6y$  when upon have an explicit  
(b) -132  $n = \langle -g_X, -g_Y, 1 \rangle = \langle -z_1 - 6, 1 \rangle$   
parameter:  $r(x,y) = \langle x, y, 4 + 2x + 6y \rangle$   
(c) -144  $F(r(x,y)) = \langle 4+2x + 6y, 4+2x + 6y, 12xy \rangle$   
(d) -84  $F \cdot n = -8(4 + 2x + 6y) + 12xy = -32 - 16x - 48y + 12xy$   
(e) -72  $\int_0^1 \int_0^2 -32 - 16x - 48y + 12xy \, dxy = \int_0^1 -32x - 8x^2 - 48xy + 6x^2y|_0^2 \, dy$   
 $= \int_0^1 -64 - 52 - 96y + 24y \, dy = \int_0^1 -96 - 72y \, dy = -96y - 36y^2 |_0^1 = -132$   
6. Let 5 be the surface defined by  $r(u, v) = (2u, -3v, v - 2u)$  with domain  $((u, v)| 0 \le u \le 1, -2 \le v \le 0$ , then compute  $\iint_{x} xy + 2z \, dS$ .  $dS = |\vec{n}| = |\vec{r}_u x \vec{r}_v|$   
(a)  $14\sqrt{76}$   $r_u = \langle 2, 0, -2 \rangle$   $r_v = \langle 0, -3, 1 \rangle$   
(b)  $6\sqrt{76}$   $[K] = \sqrt{36} + 4 + 36 = \sqrt{76}$   
(c)  $12\sqrt{76}$   
(d)  $20\sqrt{19}$   $\sqrt{76} \int_0^1 \int_0^1 -60uv + 2v - 4u \, dvdu$   
(e) none of the above  $= \sqrt{76} \int_0^1 -3uv^2 + v^2 - 4uv |_{-2}^{\infty} \, du$   
 $= \sqrt{76} \int_0^1 -(-12u + 4 + 8u) \, du$   
 $= \sqrt{76} \int_0^1 -4u - 4 \, du = \sqrt{76} (2u^2 - 4u) |_0^1$   
 $= -2\sqrt{76}$ 

- 7. Evaluate the line integral  $\int_{C} \vec{F} \cdot d\vec{r}$  where  $\vec{F}(x, y) = \langle ye^{xy}, xe^{xy} \rangle$  and if the curve C is  $\vec{r}(t) = t\hat{i} - 8\hat{j}, 0 \le t \le 1.$ (a)  $e^{-8} - 2$   $r = \langle t, -8 \rangle$   $F(r(t)) = \langle -8e^{-8t}, te^{-8t} \rangle$ (b) 2 (c) 0  $\int_{0}^{1} F \cdot dr \ dt = \int_{0}^{1} -8e^{-8t} \ dt = e^{-8t} |_{0}^{1} = e^{-8} - 1$ (d)  $e^{-8} - 1$ 
  - (e) None of the above
- 8. Evaluate  $\int_C \sin(x) dx + z \cos(y) dy + \sin(y) dz$  where *C* is the <u>ellipse  $4x^2 + 9y^2 = 36$ </u>, oriented <u>clockwise</u>.

(e) 1

9. Find the surface area of the part of the surface  $z = x^2 + y^2$  below the plane z = 9.

(a) 
$$\frac{\pi}{6}(3\sqrt{3}-1)$$
 S.A. =  $\iint_{A} \sqrt{1+(\frac{\pi}{2}x)^{2}+(\frac{\pi}{2}y)^{2}} dA$   
(b)  $\frac{\pi}{6}(3\sqrt{3}-2\sqrt{2})$  =  $\iint_{A} \sqrt{1+(\frac{\pi}{2}x)^{2}+(\frac{\pi}{2}y)^{2}} dA$  use polar!  
(c)  $\frac{\pi}{6}(37^{3/2}-1)$  =  $\int_{0}^{2\pi} \int_{0}^{3} \sqrt{1+4r^{2}} r dr d\theta$  gives  $0 \le r \le 3$   
(d)  $\frac{\pi}{6}(29^{3/2}-1)$   $u = 1t \ 4r^{2} \ du = 8r \ dr \ \frac{du}{8r} = dr$   
(e)  $\frac{\pi}{6}(27^{3/2}-1)$  =  $\frac{1}{8} \int_{0}^{2\pi} \int_{0}^{3} \sqrt{1} \ du \ d\theta = \frac{1}{8} \int_{0}^{2\pi} \frac{\pi}{3} u^{3/2} \Big|_{0}^{3} \ d\Theta = \frac{1}{12} \int_{0}^{2\pi} (3\pi)^{3/2} - 1 \ d\theta = \frac{1}{12} (3\pi)^{3/2} - 1 \Big|_{0}^{2\pi} = \frac{\pi}{6} (3\pi)^{3/2} - 1 \Big|_$ 

10. Compute the tangent plane to the surface parametrized by  $\vec{r} = u\hat{i} + uv\hat{j} + (u + v)\hat{k}$  at the point (1,2,3).  $r = \langle u, uv, u+v \rangle$ 

(a) 
$$3x + 2y + z = 10$$
  
 $x = u$   $y = uv$   $z = u + v$   
 $1 = u$   $2 = v$  point  $(u, v) = (1, 2)$   
(b)  $x - y + z = 2$   
 $r_u = \langle 1, v, 1 \rangle$   $r_v = \langle 0, u, 1 \rangle$   
(c)  $x + 2y + 3z = 14$   
 $\vec{v} = r_u \times r_v = \begin{vmatrix} i & j & k \\ i & 2 & 1 \\ 0 & 1 & 1 \end{vmatrix} = \langle 1, -1, 1 \rangle$   
(d)  $\langle x, y, z \rangle = \langle 1 + u, 2 + uv, 3 + u + v \rangle$   
 $\langle 1 - 1, 1 \rangle + \langle x - 1, y - 2, z - 3 \rangle = 0$   
 $x - 1 + 2 - y + z - 3 = 0$   
 $x - y + z = 2$ 

QR 11. Let  $\vec{F}(x, y, z) = \langle 2y^3, 1, e^z \rangle$ . Use Stokes' Theorem to set up an integral to find the circulation of  $\vec{F}$  along C, where C is the curve of intersection of the plane y + 2z = 3and the cylinder  $x^2 + y^2 = 4$ . Orient C to be counterclockwise when viewed from above. use polar plane y + 2z = 3(a)  $\int_{0}^{2\pi} \int_{0}^{2} -12r^{3} \sin^{2} \theta \, dr \, d\theta$   $\vec{n} = \langle 0, 1, 2, 7$ (make  $z = 1 \rangle$ :  $\langle 0, 1, 2, 7 \rangle = \vec{n}$ (b)  $\int_{0}^{2\pi} \int_{0}^{2} 12r^{2} \cos^{2} \theta \, dr \, d\theta$   $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \left\langle \frac{\partial \mathbf{R}}{\partial y} - \frac{\partial \mathbf{R}}{\partial z}, \frac{\partial \mathbf{R}}{\partial z} - \frac{\partial \mathbf{R}}{\partial x}, \frac{\partial \mathbf{Q}}{\partial x} - \frac{\partial \mathbf{P}}{\partial y} \right\rangle$ (c)  $\int_{0}^{2\pi} \int_{0}^{2} 12r^{3} \cos^{2}\theta \, dr \, d\theta$  curl  $\mathbf{F} = \langle \mathbf{0} - \mathbf{0}, \ \mathbf{0} - \mathbf{0}, \ \mathbf{0} - \mathbf{6y^{2}} \rangle = \langle \mathbf{0}, \mathbf{0}, -\mathbf{6y^{2}} \rangle$ (d)  $\int_{0}^{2\pi} \int_{0}^{2} -6r^{2} \sin^{2} \theta \, dr \, d\theta \quad \langle 0, 0, -6y^{2} \rangle \cdot \langle 0, \frac{1}{2}, 1 \rangle = -6y^{2}$ convert to polar 12. Suppose  $\vec{F}(x, y, z) = \langle xy^2, yz^2, zx^2 \rangle$  and let *S* be the union of the upper hemisphere of the sphere radius 2 centered at the origin with the disc of radius 2 in the xy-plane centered at icin such that C is positivaly oriented. Evaluate  $\iint \vec{t}(1, 1, 2, 2, 3) = I \vec{t} = I \vec{t}$ 

the origin such that S is positively oriented. Evaluate 
$$\iint_{S} F(x, y, z) \cdot dS = \iiint Aiv F dV$$
  
(a) 0  

$$div F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial P}{\partial z} = y^2 + z^2 + x^2 = \rho^2 \text{ (spherical)}$$
  
(b)  $\frac{8\pi^2}{3} \qquad \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2} \rho^2 \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\phi$   
(c)  $\frac{16\pi^2}{3} = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\pi/2} \frac{1}{5} \rho^5 \sin \phi \mid_{0}^{2} d\phi \, d\phi = \int_{0}^{2\pi} \int_{0}^{\pi/2} \frac{32}{5} \sin \phi \, d\phi \, d\phi$   
(d)  $\frac{64\pi}{5} = \int_{0}^{2\pi} -\frac{32}{5} \cos \phi \mid_{0}^{\pi/2} \, d\theta = \int_{0}^{2\pi} \frac{32}{5} \, d\theta = \frac{32}{5} \theta \mid_{0}^{2\pi}$ 

(e) 
$$\frac{128\pi}{5}$$
 = 64 m 5

13. Find the work done by the force field  $\vec{F}(x, y) = \langle x, y + 2 \rangle$  in moving an object along an arch of the cycloid  $r(t) = \langle t - \sin t, 1 - \cos t \rangle, 0 \le t \le 2\pi$ .

$$dr = \langle 1 - \cos t, \sin t \rangle$$
(a)  $\pi^{2}$   $F(r(t)) = \langle t - \sin t, 3 - \cos t \rangle$   
(b)  $2\pi^{2}$   $F \cdot dr = (t - \sin t)(1 - \cos t) + \sin t(3 - \cos t)$   
 $= t - t \cos t - \sin t + \sin t \cos t + 3 \sin t - \sin t \cos t$   
(c)  $3\pi^{2}$   $= t - t \cos t + 2 \sin t$   
(d)  $4\pi^{2}$   $\int_{0}^{2\pi} t - \frac{1}{t} \cos t + 2 \sin t dt = \frac{1}{2}t^{2} + t \sin t + \cos t - 2 \cos t \Big|_{0}^{2\pi}$   
(e) None of the Above  $= 2\pi^{2} + 1 - 2 - (1 - 2) = 2\pi^{2}$ 

14. Let f(x, y, z) be a potential function of the vector field  $\vec{F} = \langle 2x, z \cos(yz), y \cos(yz) \rangle$ . If f(0, 0, 0) = -1, find  $f\left(2, 1, \frac{\pi}{2}\right)$ 

e. P only

16. Let  $\vec{F} = \langle yz + 1, xz + 1, xy + 1 \rangle$ . Which of the following statements must be correct?

15. Sketch the gradient field of  $f(x, y) = x - y^2$ .  $\nabla f = F = \langle 1, -2y \rangle$ 

17. Let  $\vec{F} = \langle z - 2y, z + 2x, e^{-xy} \rangle$  and *S* be the part of the paraboloid  $z = 9 - x^2 - y^2$  with  $z \ge 0$  and oriented so that *z* component of the normal vector is positive. Calculate

$$Flux = \iint_{S} \nabla \times \vec{F} \cdot \vec{n} \, dS = \int \vec{F} \cdot dr \qquad \vec{r} = \langle 3cost, 3sint, 0 \rangle \langle dr = \langle -3sint, 3cost, 0 \rangle \rangle$$
a. 9\pi \begin{aligned} & S(r(t)) = \langle -6sint, 6cost, e^{9costsint} \rangle \\ & S(r(t)) = \langle -6sint, 6cost, e^{9costsint} \rangle \\ & S(r) = 18\pi \\ \hline & C \\ & S6\pi \\ \hline & F \cdot dr = 18sin^2t + 18cos^2t = 18 \\ & S(r) = 18t \\ & S(r) = 36\pi \\ \hline & e.0 \\ & S(r) = 18t \\ & S(r) = 36\pi \\ \hline & S(r) = 18t \\ & S(r) = 36\pi \\ \hline & S(r) = 18t \\ & S(r) =

18. You attend the University of

(a) Florida

- (b) Missouri
- (c) Arkansas
- (d) Kansas

you can do this one the long way with  $\vec{n} = \langle 0, 0, 1 \rangle$