

MAC 2313 Final Exam B Fall 2019

A. Sign your bubble sheet on the back at the bottom <u>in ink</u> .
B. In pencil, write and encode in the spaces indicated:
1) Name (last name, first initial, middle initial)
2) UF ID number
3) SKIP Section number
C. Under "special codes" code in the test ID numbers 4, 2. $\begin{array}{cccccccccccccccccccccccccccccccccccc$
D. At the top right of your answer sheet, for "Test Form Code", encode B. A $ullet$ C D E
E. 1) This test consists of 22 multiple choice questions. The test is counted out of 100 points, and there are 10 bonus points available.
2) The time allowed is 120 minutes.
3) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.
F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.
G. When you are finished:
1) Before turning in your test check carefully for transcribing errors . Any mistakes you leave in are there to stay.
2) You must turn in your scantron to your discussion leader or exam proctor. Be prepared to show your picture I.D. with a legible signature.
3) The answers will be posted in Canvas within one day after the exam.
University of Florida Honor Pledge:
On my honor, I have neither given nor received unauthorized aid doing this exam.
Signature:

Summary of Integration Formulas

• Fundamental Theorem of Calculus

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$

• Fundamental Theorem of Line Integrals

$$\int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

• Green's Theorem (circulation form)

$$\iint\limits_{D} \operatorname{curl} \vec{F} \cdot \hat{k} \, dA = \oint_{C} \vec{F} \cdot d\vec{r}$$

• Stokes' Theorem

$$\iint\limits_{S} \operatorname{curl} \vec{F} \cdot \hat{n} \, dS = \oint_{C} \vec{F} \cdot d\vec{r}$$

• Green's Theorem (flux form)

$$\iint\limits_{D} \operatorname{div} \vec{F} \, dA = \oint_{C} \vec{F} \cdot \hat{n} \, ds$$

• Divergence Theorem

$$\iiint\limits_E \operatorname{div} \vec{F} \, dV = \iint\limits_S \vec{F} \cdot \hat{n} \, dS$$

NOTE: Be sure to bubble the answers to questions 1-22 on your scantron.

Questions 1-22 are worth 5 points each.

- 1. Let $\vec{F}(x,y,z) = \langle x, -2yz, 3xz^2 \rangle$. Which of the following vectors is <u>orthogonal</u> to curl \vec{F} at the point (1,1,1)?
- a. (2, -3, 0)
- b. (2, 3, 0)
- c. (3, -2, 5)
- d. $\langle -3, -2, 1 \rangle$
- e. $\langle -3, 2, -1 \rangle$

- 2. Let $\vec{F} = \langle x^2 y^2, -2xy + y \rangle$. Which of the following statements must be correct?
 - P. $\nabla \cdot \vec{F} = 0$.
 - Q. \vec{F} is conservative.
 - R. $\int_C \vec{F} \cdot d\vec{r} = 0$ for any smooth curve C.
- a. P and Q only
- b. Q only
- c. P and R only
- d. Q and R only
- e. P, Q, and R

- **3.** Evaluate the line integral $\int_C 2xe^y ds$, where C is the line segment from (0,0) to (3,1).
- a. 6
- b. 6e
- c. 6(e-1)
- d. $6\sqrt{10} (e-1)$
- e. $6\sqrt{10}$

- **4.** Calculate $\oint_C \frac{y}{2} dx$, where C is the counterclockwise oriented curve bounding the triangle with vertices (0,0),(4,0), and (1,3).
- a. -3
- b. -6
- c. 0
- d. 3
- e. 6

5. The surface S is parameterized by $\vec{r}(u,v) = \langle 2\sin(v)\cos(u), 2\sin(v)\sin(u), 2\cos(v)\rangle$, $0 \le u \le 2\pi$ and $0 \le v \le \pi$. Which of the following statements is/are correct?

- P. The surface S is the sphere centered at (0,0,0) with radius 4.
- Q. The vector $\vec{r}_u(P)$ is parallel to the tangent plane to S at the point P.
- R. The area of the surface $S = \iint_D dA$, where $D = \{(u, v) \mid 0 \le u \le 2\pi, \ 0 \le v \le \pi\}$.
- a. P only
- b. Q only
- c. R only
- d. P and Q
- e. Q and R

6. Find the area of the surface S, where S is the part of the plane 2x + y + 2z = 10 that lies inside the cylinder $x^2 + y^2 = 16$.

- a. 48π
- b. 18π
- c. 16π
- d. 12π
- e. 24π

7. If f is a potential function of $\vec{F}(x,y) = \langle -y\sin(xy), -x\sin(xy) - 2y \rangle$ and f(0,0) = 3, find f(0,2).

- a. 1
- b. 0
- c. -1
- d. -2
- e. -3

8. If $\vec{F} = \langle -x, 0, z \rangle$, which of the following must be correct?

- P. The flux of \vec{F} across the plane z=1 is 0.
- Q. The flux of \vec{F} across the plane x=1 is 0.
- R. The flux of \vec{F} across a unit sphere is 0.
- a. P only
- b. Q only
- c. R only
- d. P and Q only
- e. P, Q, and R

- **9.** Let $\vec{F}(x,y,z) = \langle x,y,-2xy \rangle$. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where C is the curve parameterized by $\vec{r}(t) = \langle \cos t, \sin t, 2t \rangle$, $0 \le t \le \frac{\pi}{2}$.
- a. $-\pi$
- b. π
- c. 2
- d. -2
- e. 0

10. If the surface S is parameterized by $\vec{r}(u,v) = \langle u, v \cos(2u), v \sin(2u) \rangle$, find an equation of the tangent plane to S at the point $(\pi, 1, 0)$.

a.
$$-2x + z + \pi = 0$$

b.
$$-2x + z + 2\pi = 0$$

c.
$$2x + z - 2\pi = 0$$

d.
$$2y + z - \pi = 0$$

e.
$$-2y + z + 2\pi = 0$$

11. Which of the following vector fields has the graph below?

b.
$$\vec{F}_2(x,y) = \hat{i} + \hat{j}$$

c.
$$\vec{F}_3(x,y) = \hat{i} + x \hat{j}$$

d.
$$\vec{F}_4(x, y) = x \hat{i} + y \hat{j}$$

e.
$$\vec{F}_5(x,y) = y \,\hat{\imath} + \hat{\jmath}$$

12. Let $\vec{F}(x,y,z) = \langle 2y^3, 1, e^z \rangle$. Find the circulation of \vec{F} along C, where C is the curve of intersection of the plane y+2z=3 and the cylinder $x^2+y^2=4$. (Orient C to be counterclockwise when viewed from above.) By Stoke's Theorem,

$$\int_C \vec{F} \cdot d\vec{r} =$$

a.
$$\int_0^{2\pi} \int_0^2 -6r^3 \sin^2 \theta \, dr \, d\theta$$

b.
$$\int_0^{2\pi} \int_0^2 -12r^3 \sin^2 \theta \, dr \, d\theta$$

c.
$$\int_0^{2\pi} \int_0^2 12r^2 \cos^2 \theta \, dr \, d\theta$$

d.
$$\int_0^{2\pi} \int_0^2 12r^3 \cos^2 \theta \, dr \, d\theta$$

e.
$$\int_0^{2\pi} \int_0^2 -6r^2 \sin^2 \theta \, dr \, d\theta$$

13. Which of the following is correct?

- a. If \vec{F} is conservative, then $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$ for any two smooth curves C_1 and C_2 .
- b. If \vec{F} is conservative, then $\iint\limits_{S} \vec{F} \cdot d\vec{S} = 0$.
- c. If \vec{F} is conservative, then div $\vec{F} = 0$.
- d. If D is a simply connected planar region, then the area of D is $\oint_{\partial D} \frac{y}{2} dx \frac{x}{2} dy$, where ∂D is oriented counterclockwise.
- e. If $\vec{F} = \langle x, -2y, z \rangle$, then $\iint_S \vec{F} \cdot d\vec{S} = 0$, where S is a unit sphere.

14. Set up a double integral for the surface integral $\iint_S (z+1) dS$, where S is the part of the paraboloid $z = x^2 + y^2 - 1$, $-1 \le z \le 5$.

a.
$$\int_0^{2\pi} \int_0^1 r^3 \sqrt{4r^2 + 1} \, dr \, d\theta$$

b.
$$\int_0^{2\pi} \int_0^1 r^2 dr d\theta$$

c.
$$\int_0^{2\pi} \int_0^{\sqrt{6}} r^2 dr d\theta$$

d.
$$\int_0^{2\pi} \int_0^{\sqrt{6}} r^3 \sqrt{4r^2 + 1} \, dr \, d\theta$$

e.
$$\int_0^{2\pi} \int_0^{\sqrt{6}} r^2 \sqrt{4r^2 + 1} \, dr \, d\theta$$

15. Find the work done by the force $\vec{F} = \langle 3x^2, 3y^2 \rangle$ in moving a particle along the parametric curve $\vec{r}(t) = \langle t \cos t, t \sin t \rangle$, $0 \le t \le 2\pi$.

Hint: Is \vec{F} conservative?

- a. $8\pi^3$
- b. 8π
- c. 2π
- d. $2\pi^3$
- e. 0

- **16.** Calculate $\iint_S (\nabla \times \vec{F}) \cdot \hat{n} \, dS$, where $\vec{F} = \langle y, -x, e^{xyz} \rangle$ and S is the part of paraboloid $z = 3x^2 + 3y^2, \ 0 \le z \le 6$, oriented downward.
- a. -2π
- b. -4π
- c. 0
- d. 2π
- e. 4π

17. Let $\vec{F} = \langle x^3 + y^3, y^3 + z^3, z^3 + x^3 \rangle$ and let S be the sphere centered at (0,0,1) with radius 1. Then the flux of \vec{F} across the surface S is

a.
$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta$$

b.
$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^{\cos \phi} 3\rho^4 \sin \phi \, d\rho \, d\phi \, d\theta$$

c.
$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^{\cos\phi} 3\rho^2 \, d\rho \, d\phi \, d\theta$$

d.
$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^{2\cos\phi} 3\rho^4 \sin\phi \, d\rho \, d\phi \, d\theta$$

e.
$$\int_0^{2\pi} \int_0^{\pi} \int_0^{2\cos\phi} 3\rho^2 \, d\rho \, d\phi \, d\theta$$

18. Which of the following regions is/are simply connected?

$$D_1 = \{ (x, y) | 1 < x^2 + y^2 < 9 \text{ and } x > 0 \}$$

$$D_2 = \{ (x, y) \mid x > 0 \text{ and } y > 0 \}$$

$$D_3 = \{ (x, y) \mid y \neq 1 \}$$

a.
$$D_1$$
 only

b.
$$D_2$$
 only

c.
$$D_3$$
 only

d.
$$D_1$$
 and D_2

e.
$$D_2$$
 and D_3

19. Let D be the region bounded by $y = \sqrt{2x - x^2}$ and the x-axis and let ∂D be its boundary curve oriented positively. Then

$$\int_{\partial D} -x^2 y \, dx + xy^2 \, dy =$$

a.
$$\int_0^{\pi} \int_0^{2\cos\theta} -r^2 dr d\theta$$

b.
$$\int_0^{\pi/2} \int_0^{2\cos\theta} r^3 dr d\theta$$

c.
$$\int_0^{\pi/2} \int_0^{2\cos\theta} -r^3 dr d\theta$$

d.
$$\int_0^{\pi} \int_0^{2\cos\theta} r^3 dr d\theta$$

e.
$$\int_0^{\pi/2} \int_0^{2\cos\theta} r^2 dr d\theta$$

- **20.** Let $\vec{F}(x, y, z) = (3x y)\hat{\imath} + (3y z)\hat{\jmath} + (3z x)\hat{k}$ and let S be the surface of the solid bounded by x = 0, x = 2, y = 0, y = 2, z = 0, and z = 2. Find the flux of \vec{F} across S.
- a. 54
- b. 108
- c. 36
- d. 72
- e. 18

21. Let $\vec{F}(x, y, z) = \left\langle \cos\left(\sqrt{x^2 + y^2 + z^2}\right), e^{\sqrt{xyz}}, \sin^3(x) \right\rangle$. Find div (curl \vec{F}) at the point (1, 1, 1).

- a. 0
- b. e
- c. $\frac{e}{2}$
- d. \sqrt{e}
- e. 1

22. Let $\vec{F}(x,y) = \langle x^3 - y^2, x^2 - y^3 \rangle$. Let D be the region bounded by $y = x^2$, y = 0 and x = 1, and ∂D be its boundary curve oriented positively. Then the flux of \vec{F} across the boundary curve $\partial D = \oint_{\partial D} \vec{F} \cdot \hat{n} \, ds =$

a.
$$\int_0^1 \int_0^{x^2} (2x + 2y) \, dy \, dx$$

b.
$$\int_0^1 \int_{x^2}^1 (2x + 2y) \, dy \, dx$$

c.
$$\int_0^1 \int_0^{x^2} (3x^2 + 3y^2) \, dy \, dx$$

d.
$$\int_0^1 \int_{x^2}^1 (3x^2 - 3y^2) \, dy \, dx$$

e.
$$\int_0^1 \int_0^{x^2} (3x^2 - 3y^2) \, dy \, dx$$