Show all your work completely, and simplify your final answers.

- 1. [5 points] Let $\mathbf{u} = \langle 3, 6, -2 \rangle$ and $\mathbf{v} = \langle 2, 1, -5 \rangle$. Compute the following:
 - 1.a [1 point] The vector $\mathbf{u} + \mathbf{v}$.

Name:

Key

<3, 6, -27+<2, 1, -5> = <5, 7, -7>

- 1.b [1 point] The vector $\mathbf{u} 2\mathbf{v}$. $\langle \mathbf{3}, \mathbf{6}, -2 \rangle - 2 \langle \mathbf{2}, \mathbf{1}, -5 \rangle$ $= \langle \mathbf{3}, \mathbf{6}, -2 \rangle - \langle \mathbf{4}, \mathbf{2}, -10 \rangle = \langle -1, \mathbf{4}, \mathbf{8} \rangle$
- 1.c [1 point] The value $|\mathbf{u} 2\mathbf{v}|$.

$$\sqrt{(-1)^2 + (4)^2 + (8)^2} = \sqrt{1 + 16 + 64} = \sqrt{81} = 9$$

1.d [1 point] The unit vector in the direction of $\mathbf{u}-2\,\mathbf{v}$.

1.e [1 point] The vector of magnitude 3 in the direction of $\mathbf{u}-2\,\mathbf{v}$.

$$3\langle \dot{\exists}, \ddot{\ddot{a}}, \dot{\ddot{a}} \rangle = \langle \ddot{\ddot{a}}, \ddot{\ddot{a}}, \ddot{\ddot{a}} \rangle$$

= $\langle \dot{\ddot{3}}, \ddot{\ddot{3}}, \ddot{\ddot{s}} \rangle$

2. [4 points] Find the equation of a sphere in standard form that has center (1, -3, 2) and passes through the point (-5, -1, 5).

$$(x-1)^{2} + (y+3)^{2} + (z-2)^{2} = r^{2}$$

 $(-5-1)^{2} + (-1+3)^{2} + (5-2)^{2} = r^{2}$
 $36 + 4 + 9 = 49 = r^{2}$
 $(x-1)^{2} + (y+3)^{2} + (z-2)^{2} = 49$
* can also solve for r by Using the distance formula between the center and the point.

3. [1 point] What is your TA's name? You will need this information throughout the semester.

Abby Owens :