Answer the following problems. No calculators, formula sheets, or other aids are permitted. Please show all of your work. Simplify all solutions completely and clearly indicate your answers.

- 1. Let L be the line passing through the point $P_0(1,1,2)$ and perpendicular to the plane S_1 : 2x - y + 2z = 3, and S_2 be the plane containing L and the point $Q_0(4, 1, 4)$.
 - (a) (3 points) Find the vector equation of the line L.

$$S_1 = \langle 2, -1, 2 \rangle = \vec{n}_1 = \text{direction vector} \rightarrow \text{this is the normal vector to } S_1, \text{ and since } D_0 = (1,1,2)$$

$$\vec{V}_0 = \langle 1,1,2 \rangle = \vec{n}_1 = \text{direction vector} \rightarrow \text{this is the normal vector to } S_1, \text{ and since } D_0 = \langle 1,1,2 \rangle = \vec{n}_1 = \vec{n}_1 = \vec{n}_2 = \vec{n}_1 = \vec{n}_2 = \vec{n}_1 = \vec{n}_2 = \vec{n}_2 = \vec{n}_1 = \vec{n}_2 = \vec{n}_2 = \vec{n}_1 = \vec{n}_2 = \vec{n}_1 = \vec{n}_1 = \vec{n}_2 = \vec{n}_1 =$$

$$\vec{r} = \vec{V_0} + t \vec{N_1}$$
 where $\vec{V_0}$ is position vector and $\vec{V_0}$ formula $\vec{V_0} = \vec{V_0} + t \vec{V_0} = \vec{V_0} + t \vec{V_0} = \vec{V_0} = \vec{V_0} + t \vec{V_0} = \vec{V$

(b) (5 points) Find the linear equation of the plane S_2 .

$$S_2$$
 contains L and $(4,1,4)$

$$L = \begin{cases} x = 1 + 2t \\ y = 1 - t \end{cases} \Rightarrow \langle 2, -1, 2 \rangle = \vec{v} = \text{direction vector From (a)}$$

$$= \langle 1 - t \rangle \Rightarrow \langle 2, -1, 2 \rangle = \vec{v} = \text{direction vector From (a)}$$

$$= \langle 1 - t \rangle \Rightarrow \langle 2, -1, 2 \rangle \Rightarrow \vec{v} = \text{direction vector From (a)}$$

$$= \langle 1 - t \rangle \Rightarrow \langle 2, -1, 2 \rangle \Rightarrow \langle 1 - t \rangle \Rightarrow \langle 1, 1, 1, 2 \rangle \Rightarrow \langle 1, 1, 2 \rangle \Rightarrow$$

 $=-2\hat{i}+2\hat{j}+3\hat{k}=\langle -2,2,3\rangle + \hat{n_2}=\text{ hormal to } S_2$

-2x + 2y +3==d <- use point (4,1,4) to find d -2(4) + 2(1) + 3(4) = d -8 + 2 + 12 = 6 = d $\left[-2x + 2y + 37 = 6\right]$

(c) (2 points) Show that S_1 is orthogonal to S_2 .

$$S_1 = \langle 2, -1, 2 \rangle$$
 $S_2 = \langle -2, 2, 3 \rangle$

$$6_{1} \cdot 6_{2} = \langle 2, -1, 2 \rangle \cdot \langle -2, 2, 3 \rangle = -4 + -2 + 6 = 0 \Longrightarrow$$

5, and Sz are orthogonal /