Name: Key
Quiz 7
1. (5 points) Evaluate the iterated integral
$$\int_{0}^{2} \int_{0}^{4-x^{2}} xe^{x^{2}} dy dx$$
 by reversing the order of integration.
from the original bounds we have
 $y = 4 - x^{2}$, $y = 0$, $x = 2$, $x = 0$
New integral:
 $\int_{0}^{4} \int_{0}^{\sqrt{4-y}} xe^{x^{2}} dx dy$
 $= \int_{0}^{4} \int_{0}^{\sqrt{4-y}} xe^{x^{2}} dx dy$
 $= \int_{0}^{4} \int_{0}^{\sqrt{4-y}} xe^{x} \frac{du}{2x} dy$
 $= \int_{0}^{4} \int_{0}^{\sqrt{4-y}} xe^{y} \frac{du}{2x} dy$
 $= \int_{0}^{4} \int_{0}^{\sqrt{4-y}} xe^{y} \frac{du}{2x} dy$
 $= \int_{0}^{4} \int_{0}^{\sqrt{4-y}} xe^{y} \frac{du}{2x} dy$
 $= \int_{0}^{4} \int_{0}^{\sqrt{4-y}} \frac{1}{2} dy = \int_{0}^{4} \left[\frac{1}{2}e^{x}\right]_{0}^{\sqrt{4-y}} dy$
 $= \int_{0}^{4} \frac{1}{2}e^{x-y} - \frac{1}{2} dy = \left[\frac{-1}{2}e^{4-y} - \frac{1}{2}y\right]_{0}^{4}$

2. (5 points) Write in terms of inequalities involving spherical coordinates a description of the solid *E* that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 2z$.