for $0 \le t \le 1$.

 $F(t) \cdot r'(t)$

Name: Key

.

Section: _____

Problem 1 (6 points). Determine whether

 $\mathbf{F} = \langle y e^{xy}, x e^{xy} + 3y^2 \rangle$

is conservative. If it is, find a function f such that $\nabla f = \mathbf{F}$.

$$F(x,y) = \langle P(x,y), Q(x,y) \rangle$$

$$F = \langle p^{xy} |_{u=1}^{u=y} |_{v=x^{xy}}^{v=e^{xy}}$$

$$F(x,y) dx = \int y e^{xy} dx = e^{xy} + C$$

$$\frac{dP}{dy} = vu' + uv'$$

$$\int Q(x,y) dy = \int x e^{xy} + 3y^2 dy = e^{xy} + y^3 + C$$

$$Q = xe^{xy} + 3y^2$$

$$F(x,y) = e^{xy} + y^3 (+C)$$

$$\frac{dQ}{dx} = e^{xy} + xy e^{xy}$$

$$(you can check to see that $\nabla F = F$)
$$Since \frac{dP}{dy} = \frac{dQ}{dx}, F is conservative.$$$$

Problem 2 (4 points). Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where

From the curve C is parameterized by
if
$$r(t) = \langle t + t^2, t \rangle$$

for $0 \le t \le 1$.

$$F(r(t)) = \langle -2(t+t^2), t \rangle$$

$$F(r(t)) = \langle 1 + 2t, 1 \rangle$$

$$F(t) \cdot r'(t)$$

$$F(t) \cdot r'(t)$$

$$F(t) \cdot r'(t)$$

$$F(t) + 2(t+2t, 1)$$

1