

FINAL EXAM

A. Sign your bubble sheet on the back at the bottom in ink.

- **B.** In pencil, write and encode in the spaces indicated:
 - 1) Name (last name, first initial, middle initial)
 - **2)** UF ID number
 - 3) SKIP Section number
- **C.** Under "special codes" code in the test ID numbers 4, 1.
- D. At the top right of your answer sheet, for "Test Form Code", encode A.
 B C D E
- E. 1) This test consists of 18 multiple choice questions
 - 2) The time allowed is 120 minutes.
 - **3)** You may write on the test.
 - **4)** Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- **G.** When you are finished:
 - **1)** Before turning in your test **check carefully for transcribing errors**. Any mistakes you leave in are there to stay.
 - **2)** You must turn in your scantron and tearoff sheets to your discussion leader or exam proctor. Be prepared to show your picture I.D. with a legible signature.
 - 3) The answers will be posted in Canvas within one day after the exam.

Summary of Integration Formulas

• Fundamental Theorem of Calculus

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a)$$

• Fundamental Theorem of Line Integrals

$$\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

• Green's Theorem (circulation form)

$$\iint_{D} \operatorname{curl} \vec{F} \cdot \hat{k} \, dA = \oint_{C} \vec{F} \cdot d\vec{r}$$

• Stokes' Theorem

$$\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} \, dS = \oint_{C} \vec{F} \cdot d\vec{r}$$

• Green's Theorem (flux form)

$$\iint_{D} \operatorname{div} \vec{F} \, dA = \oint_{C} \vec{F} \cdot \hat{n} \, ds$$

• Divergence Theorem

$$\iiint_E \operatorname{div} \vec{F} \, dV = \bigoplus_S \vec{F} \cdot \hat{n} \, dS$$

Questions 1 – 18 are worth 6 points each.

1. Evaluate
$$\int_{C} xy + 2z \, ds$$
 where *C* is the line from *P*(1, 0, 0) to *Q*(0, 1, 1).
(a) $\frac{\sqrt{3}}{6}$
(b) $\frac{5\sqrt{3}}{6}$
(c) $\frac{7\sqrt{3}}{6}$
(d) $\frac{\sqrt{5}}{6}$
(e) $7\frac{\sqrt{5}}{6}$

- 2. Evaluate the line integral of $\vec{F} = \langle y x, x \rangle$ on the path of the quarter circle from P(0, 1) to Q(1, 0).
 - (a) 0

(b)
$$-\frac{5}{2}$$

(c) $-\frac{1}{2}$
(d) $-\frac{3}{2}$
(e) $-\frac{15}{2}$

3. Let *C* be the unit circle with counterclockwise orientation. Find the circulation on *C* of the rotation flow field $\vec{F} = \langle -y, x \rangle$.

(a) 0
(b) π
(c) 2π
(d) 3π
(e) 4π

- 4. Find a potential function for the vector field $\vec{F} = \langle 2xy z^2, x^2 + 2z, 2y 2xz \rangle$.
 - (a) $f(x, y, z) = x^2y xz^2 + 2yz$
 - (b) $f(x, y, z) = x^2$
 - (c) $f(x, y, z) = x^2 y xz^2$
 - (d) f(x, y, z) = -2xz + 2y
 - (e) \vec{F} is not conservative

- 5. Find the work done by the vector field $\vec{F} = \langle yz, xz, xy \rangle$ along any smooth curve joining *P*(-1, 3, 9) to *Q*(1, 6, -4).
 - (a) 0
 (b) 1
 (c) 2
 (d) 3
 (e) 4
- 6. Compute the line integral $\oint_C x^2 y^2 dx + x^3 + y^2 dy$ where *C* is the boundary of the region enclosed by $y = x^2$ and y = x.
 - (a) $\frac{9}{13}$
 - (b) 9
 - (c) $\frac{9}{35}$
 - (d) 11
 - (e) 13

- 7. Find the surface area of the cylinder $x^2 + y^2 = 16$ between the planes z = 0 and z = 16 2x.
 - (a) 24π
 - (b) 48π
 - (c) 64π
 - (d) 128π
 - (e) 264π
- 8. Consider the vector field $\vec{F} = \langle 0, 0, -1 \rangle$. Find the flux in the downward (negative *z*) direction across the surface z = 4 2x y in the first octant.
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 5

- 9. Use Stokes' Theorem to evaluate the line integral $\oint_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle 2y, -z, x \rangle$ and *C* is the circle $x^2 + y^2 = 12$ with counterclockwise orientation in the plane z = 0.
 - (a) -6π
 - (b) -12π
 - (c) −24π
 - (d) -48π
 - (e) -96π
- 10. Compute the tangent plane to the surface parametrized by $\vec{r} = u\hat{i} + uv\hat{j} + (u + v)\hat{k}$ at the point (1,2,3).
 - (a) 3x + 2y + z = 10
 - (b) x y + z = 2
 - (c) x + 2y + 3z = 14
 - (d) $\langle x, y, z \rangle = \langle 1 + u, 2 + uv, 3 + u + v \rangle$
 - (e) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$

11. Calculate $\iint_{S} \vec{F} \cdot d\vec{S}$ where $F = \langle 2x^3 + y^3, y^3 + z^3, 3y^2z \rangle$ and *S* is the surface of the solid bounded by the paraboloid $z = 1 - x^2 - y^2$ and the *xy*-plane.

(a) π

(b) 2π

(c) 3π

- (d) 4π
- (e) 5π

12. Let $\vec{F} = \langle yz + 1, xz + 1, xy + 1 \rangle$. Which of the following statements must be correct?

P.
$$\vec{F}$$
 is conservative.
Q. $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$ for any two smooth curves C_1 and C_2 .

R. The circulation of \vec{F} along a smooth curve is zero.

(a) P and Q only

(b) P and R only

(c) Q and R only

(d) P, Q, and R

(e) P only

13. Let $\vec{F} = \langle 2x^3 + y^3, 2y^3 + z^3, 2z^3 + x^3 \rangle$ and let *S* be the sphere centered at (0,0,2) with radius 2. By the Divergence Theorem, the flux of \vec{F} across the surface *S* is

(a)
$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{4\cos\phi} 6\rho^{4} \sin\phi \, d\rho \, d\phi \, d\theta$$

(b)
$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2\cos\phi} 6\rho^{4} \sin\phi \, d\rho \, d\phi \, d\theta$$

(c)
$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{4\cos\phi} 6\rho^{2} \, d\rho \, d\phi \, d\theta$$

(d)
$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2} \cos\phi \, 6\rho^{2} \, d\rho \, d\phi \, d\theta$$

(e)
$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2} 6\rho^{4} \sin\phi \, d\rho \, d\phi \, d\theta$$

14. Let *S* be the unit sphere centered at the origin. Which of the following vector fields whose flux integral across *S* is equal to 0?

$$\vec{F} = \langle x, y, z \rangle$$
$$\vec{G} = \langle e^{yz}, -2y, 2z \rangle$$
$$\vec{H} = \langle x - 2y, y - 2z, z - 2x \rangle$$

- (a) \vec{F} only
- (b) \vec{G} only
- (c) \vec{H} only
- (d) $\vec{F}, \vec{G}, \text{ and } \vec{H}$
- (e) none of them

15. Let *S* be the part of the sphere of radius 1 centered at the origin and lying in the first octant. The surface can be represented parametrically by

(a)
$$\vec{r}(\theta,\phi) = \langle \cos\theta \sin\phi, \sin\theta \sin\phi, \cos\phi \rangle, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi$$

- (b) $\vec{r}(\theta, \phi) = \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle, 0 \le \theta \le \pi, 0 \le \phi \le \pi$
- (c) $\vec{r}(\theta, \phi) = \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle, 0 \le \theta \le \pi, 0 \le \phi \le \pi/2$
- (d) $\vec{r}(\theta,\phi) = \langle \cos\theta \sin\phi, \sin\theta \sin\phi, \cos\phi \rangle, 0 \le \theta \le \pi/2, 0 \le \phi \le \pi/2$
- (e) $\vec{r}(\theta, \phi) = \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi/2$
- 16. Let *C* be given by $\vec{r}(t) = \langle t. t^2, -2 \rangle, 0 \le t \le 2$. Compute $\int_C y \, dx + 2z \, dy + (x + z) \, dz$. (a) 0
 - (b) $\frac{22}{3}$ (c) $\frac{32}{3}$ (d) $\frac{64}{3}$ (e) $\frac{40}{3}$

17. Let $\vec{F} = \langle z - 2y, z + 2x, e^{-xy} \rangle$ and *S* be the part of the paraboloid $z = 9 - x^2 - y^2$ with $z \ge 0$ and oriented so that *z* component of the normal vector is positive. Calculate

$$\iint_{S} \nabla \times \vec{F} \cdot \vec{n} \, dS =$$

- a. 9π
- b. 18π
- c. 36π
- d. 48π
- e. 0
- 18. You attend the University of
 - (a) Florida
 - (b) Missouri
 - (c) Arkansas
 - (d) Kansas