4. How many of the following statements are true concerning the graph of f(x) given below

$$(X) f''(x) \ge 0$$
 for all x-values between -1 and $1 - 0$ DNE AT X=0 B/C -1 DNE -1 -1 DNE

(
$$(x)$$
) has exactly two critical numbers f HAS $f(x)$ has exactly two critical numbers f

(iii)
$$f(x)$$
 has exactly one local minimum $\wedge \circ$

$$f'(x) \le 0$$
 for all $x \ge 0$ f' is not defined at $x = 0$

$$*\Delta Y = f(x+\Delta X) - f(X)$$

3. The elevation h (in feet above the ground) of a stone dropped from a height of 500 ft is modeled by the equation $h(t) = 500 - 16t^2$, where t is measured in seconds and air resistance is neglected. Use differentials to approximate the change in elevation over the interval $3 \le t \le 3.1$ seconds.

(A)
$$\Delta h \approx -4.8 \text{ ft}$$
 (B) $\Delta h \approx -9.6 \text{ ft}$ (C) $\Delta h \approx -118 \text{ ft}$ (D) $\Delta h \approx -846.4 \text{ ft}$ (E) None of the above $\Delta t = 3.1 - 3 = 0.1$

$$\Delta h = f(t + \Delta t) - f(t)$$

$$\Delta h = f(3+0.1) - f(3)$$

$$t = 3$$

$$t = 3$$

$$= 500 - 16(9.61)$$

$$= 500 - 16(9.61)$$

$$\Delta h = f(3.1) - f(3)$$
= 396.24

$$\Delta h = 346.24 - 356$$

$$4(3) = 500 - 16(3)^{2}$$

$$500 - 144$$

$$356$$

$$f'(0) = -2(0) + 4 - 2e^{0}$$

$$= 4 - 2$$

$$= 2$$

$$f'(0) = 2 > 0 \implies f$$
6. If $f(x) = -x^2 + 4x + 3 - 2e^x$, then how many of the following are true:

The graph of the function is concave upward at $x = 0$.

The function is increasing at $x = 0 *$

The function has two inflection points

(iv) The function is concave downward at $x = \ln 2$

 $f'(x) = -2x + 4 - 2e^{x} \longrightarrow f''(x) = -2 - 2e^{x} = -2(1+e^{x})$

$$f''(x) = -2 - 2e^{x}$$
 $f''(\ln(z)) = -2 - 2e^{\ln 2}$
 $f''(0) = -2 - 2e^{0}$
 $= -2 - 2(2)$
 $= -2 - 4 = -6 = 6$
 $\Rightarrow f''(0) = -2 - 4 = -6 = 6$

F"(0) LO => + ISCONCAUE DOWN AT X=0 ROWN
AT X=In ?