MAC2311 Class Number 15534 QUIZ 2
 1/24/2019

Name: SOLUTIONS

1. Find the limit:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2}+2 x-8}{x^{2}+x-4} & =\frac{0+2(0)-8}{0+0-4} \\
& =\frac{-8}{-4}=2
\end{aligned}
$$

2. Let $f(x)=\frac{x^{2}+x-6}{x^{2}-x-2}$. How would you define $f(2)$ in order to make f continuous at 2 ?
$f(x)=\frac{(x+3)(x-2)}{(x+1)(x-2)}=\frac{x+3}{x+1}$: FIND $f(2)$ FOR $f(x)=\frac{x+3}{x+1}$

$$
\begin{array}{r}
f(2)=\frac{2+3}{2+1}=\frac{5}{3} \\
f(2)=\frac{5}{3}
\end{array}
$$

Find the numbers at which f is discontinuous. At which of these points of discontinuity is f continuous from the right? At which of these points of discontinuity is f continuous from the left? *LOOK@ "CHANGEN POINTS, $X=-2, x=-1$

1. $\lim _{x \rightarrow-2^{-}} f(x)=(-2-3)^{2}-10=(-5)^{2}-10=15$
$\lim _{x \rightarrow 2^{+}} f(x)=(-2+6)=4, \quad \sin C E \lim _{x \rightarrow-2^{-}} f(x) \neq \lim _{x \rightarrow-2^{+}} f(x)$, f is Discontinuous at $x=-2$. Since f is

$$
\text { 2. } \begin{aligned}
& \lim _{x \rightarrow--^{-}} f(x)=-1+6=5 \\
& \lim _{x \rightarrow-1^{+}} f(x)=(-1)^{2}-3(-1)+1
\end{aligned}
$$

$$
\text { DEFILED AT } x=-2 \text { FROM THE LEFT, }
$$

$$
f \text { IS CONTINUOUS AT } x=-2 \text { FROM THE }
$$

$$
\text { LEFT. } f \text { IS NOT CONT INUOW AT } X=-2
$$ FROM THE RIGHT.

