MAC2311 Class Number 15498
QUIZ 3

$$1/31/2019$$
 METHOD 2: DEGREE OF
NUMERATOR IS 1 (SINCE
 $\sqrt{x^2} = |x|$) ANDTHE DEGREE
Name: SOLUTIONS
1. Find the limit: $\sqrt[x]{x^2} = |x|$
 $\lim_{x \to \infty} \frac{\sqrt{64x^2 - 3} + 7}{x + 3}$ LEADING (DEFFICIENTS
 $\lim_{x \to \infty} \frac{\sqrt{64x^2 - 3} + 7}{x + 3}$ LEADING (DEFFICIENTS
 $\lim_{x \to \infty} \frac{\sqrt{64x^2 - 3} + 7}{x + 3}$ LEADING (DEFFICIENTS
 $\lim_{x \to \infty} \frac{\sqrt{64x^2 - 3} + 7}{x + 3}$ LEADING (DEFFICIENTS
 $\lim_{x \to \infty} \frac{\sqrt{64x^2 - 3} + 7}{x + 3}$ LEADING (DEFFICIENTS
 $\lim_{x \to \infty} \frac{\sqrt{64x^2 - 3} + 7}{x + 3}$ LEADING (DEFFICIENTS
 $\lim_{x \to \infty} \frac{\sqrt{64x^2 - 3} + 7}{x + 3}$ LEADING (DEFFICIENTS)

2. Find the average velocity of
$$s(t) = t^2 - 3t$$
 from $t = 2$ to $t = 2 + h$
 $S(t) = \underbrace{S(2+h) - S(2)}_{2+h-2} = \underbrace{(2+h)^2 - 3(2+h) - (2^2 - 3(2))}_{h}$
 $= \underbrace{Y(+4h + h^2 - 16 - 3h - (-2h))}_{h} = \underbrace{h + h^2}_{h} = \underbrace{Y(1+h)}_{h}$
3. Compute the limit:
 $\lim_{x \to -1} \frac{-4 - \frac{4}{x}}{x+1} = \underbrace{\lim_{x \to -1} \frac{-4 - \frac{4}{x}}{x+1}}_{X+1} = \underbrace{\lim_{x \to -1} \frac{-4 - \frac{4}{x}}{x(x+1)}}_{X+1} = \underbrace{\lim_{x \to -1} \frac{-4 - \frac{4}{x}}}{x(x+1)}}_{X+1} = \underbrace{\lim_{x \to -1} \frac{-4 - \frac{4}{x}}}{x(x+1)}}_{X+1}$