RELATED RATES:

- 1. DETERMINE WHAT YOU ARE SOLVING FOR /WHAT YOU ARE TRYING TO FIND.
- 2. WRITE DOWN THE "GIVEN" ONANTITIES IN THE PROBLEM (DRAW A PICTURE)
- 3. WRITE AN EQUATION PELATING THE GIVEN QUANTITIES
- 4. TAKE DERIVATIVE IMPLICITLY (OF BOTH SIDES) WITH RESPECT TO TIME
- 5. PLUG IN GIVEN QUANTITIES AND SOLVE

LOGARITHMIC DIFFERENTIATION:

$$\frac{d}{dx} \ln(x) = \frac{1}{x}$$

$$\frac{dx}{dx} = \frac{1}{\ln(4)x}$$

$$(3) \frac{dx}{d} \left[lv(t(x)) \right] = \frac{t(x)}{1} t_i(x)$$

$$\frac{dx}{dx} \left[\log_{\alpha} (f(x)) \right] = \frac{f'(x)}{f(x) \ln(\alpha)}$$

UNEARIZATION:

 $\Gamma(x)=t_1(\sigma)(x-\alpha)+t(\sigma)$

(x) IS THE LINEAR APPROXIMATION TO f(x) ATX=q

WE USE THE ABOVE EQUATION TO APPROXIMATE f(X), SO f(X) & L(X)

*THE EPPOR IS GIVEN BY IF(X) - L(X)

DIFFERENTIALS:

A DIFFERENTIAL IS A SMALL CHANGE IN A VARIABLE.

(1) dx ISTHE DIFFERENTIAL FORX, dy ISTHE DIFFERENTIAL

FORY

(2) AX=dX = "ACTUAL" CHANGE IN X
(3) FOR y=f(x), dy=f'(x) dx ADD Ay≈dy
(4) THE ACTUAL CHANGE IN YIS DY= f(X+DX)-f(X)
(5) RELATIVE EPPOP IS DY ~ dy
Vo Vo
(6) THE EQUATION FOR LINEAR APPROXIMATION IS NOW GIVEN BY:
L(x)= f(q)+dy = "NEW = OLD+ CHANGE"