6. First, find the equation of the line containing the two points below. Then, write the equation as $y=m x+b$ and choose the intervals that contain m and $b . \quad y=\frac{-14}{\mathbf{9}} \mathbf{x}-\frac{5 \mathbf{3}}{9}\left(x_{2}, y_{2}\right)$

$$
m=-\frac{14}{9} \quad b=-\frac{53}{9}
$$

(A) $m \in[-4,0]$ and $b \in[-6.4,-5.4]$
B. $m \in[-2,-1]$ and $b \in[5.1,8.1]$
C. $m \in[-4,1]$ and $b \in[11.7,12.9]$
D. $m \in[-5,0]$ and $b \in[-11.1,-10]$
E. $m \in[0,3]$ and $b \in[-13.6,-11.4]$

$$
\begin{aligned}
y & =m x+b \\
y & =-\frac{14}{9} x+b \\
-4 & =-\frac{14}{9}(2)+b
\end{aligned}
$$

$$
-4=\frac{-28}{9}+b \Rightarrow \frac{-81}{9}+\frac{28}{9}=b \Rightarrow \frac{-53}{9}=b
$$

7. Write the equation of the line in the graph below in the form $A x+B y=C$. Then, choose the intervals that contain A, B, and C.

SLOPE:

$m=\frac{-3-1}{0-(-3)}=\frac{-4}{3}$
y-intercept is WHERE $X=0$, AND
WE ARE GIVEN THIS
POINT! SO, $b=-3$

$$
A=4 \quad B=3 \quad C=-9
$$

$y=m x+b$
A. $A \in[0.5,0.84], \quad B \in[-1.01,-0.67]$, and $C \in[11.5,12.4]$

$$
+\frac{4}{3} x=+\frac{4}{3} x
$$

B. $A \in[1,1.42], \quad B \in[0.85,1.58]$, and $C \in[-3.4,0.4]$

$$
y=-\frac{4}{3} x-3
$$

$$
\left(y+\frac{4}{3} x=-3\right)^{3}
$$

C. $A \in[-4.07,-2.99], \quad B \in[-3.01,-2.67]$, and $C \in[5.3,10.2]$
D. $A \in[2.53,3.79], \quad B \in[-4.72,-3.85]$, and $C \in[11.5,12.4]$
(E) $A \in[3.04,4.03], B \in[2.74,3.5]$, and $C \in[-9.3,-8.7]$

$$
\begin{aligned}
& 3 y+3\left(\frac{4}{3} x\right)=-3(3) \\
& 3 y+4 x=-9 \\
& 4 x+3 y=-9
\end{aligned}
$$

Module 2 - Linear Equations
8. Find the equation of the line described below. Write the linear equation as $y=m x+b$ and choose the intervals that contain m and b.

Parallel to $8 x-13$ passing through the point $\begin{array}{rlrl}m & =\frac{8}{5} \quad b=-\frac{41}{5} & \searrow 8 x-5 y & =13 \\ \text { A. } m & \in[1,5] \text { and } b \in[-1,1] & \frac{-8 x}{}=-8 x \\ \text { (B) } m & \in[1.5,2.1] \text { and } b \in[-9,-6] & \frac{-5 y}{-5} & =\frac{-8 x+13}{-5}\end{array}$
C. $m \in[-0.2,1.1]$ and $b \in[-12,-5]$
D. $m \in[-2,-0.9]$ and $b \in[13,18]$
E. $m \in[-1,3]$ and $b \in[5,11]$
$y=\frac{8}{5} x-\frac{13}{5}$
コ
SLOPES $\frac{8}{5}$

- parallel = same slope!
$3=\frac{8}{5}(7)+b$
$3=\frac{56}{5}+b$
$3-\frac{56}{5}=b \Rightarrow \frac{15}{5}-\frac{56}{5}=b$
$-\frac{41}{5}=b$

9. Solve the equation below. Then, choose the interval that contains the solution. $y=\frac{8}{5} x-\frac{41}{5}$

$$
x=-1.45 \quad-3(-4 x)+(-3)(-10)=(-9)(-8 x)+(-9)(-13)
$$

A. $x \in[-1.29,-0.99]$
(B. $x \in[-1.72,-1.35]$
C. $x \in[1.89,2.58]$
D. $x \in[-1.77,-1.5]$
E. There are no Real solutions.
$12 x+30=72 x+117$
$-12 x=-12 x$

$$
30=60 x+117
$$

$$
-117=-117
$$

$$
-\frac{87}{60}=\frac{60 x}{60} \Rightarrow-\frac{87}{60}=x \text { OR }-1.45=x
$$

10. Solve the linear equation below. Then, choose the interval that contains the solution.

$$
\begin{array}{r}
\quad\left(\frac{5 x+5}{5}-\frac{4 x-5}{2}=\frac{3 x+4}{3}\right) 30 \quad 15 \quad 5 \cdot 2 \cdot 3=30 \\
x=1.083 \quad 630\left(\frac{5 x+5}{8}\right)-\frac{36}{15}\left(\frac{4 x-5}{7}\right)=30\left(\frac{3 x+4}{3}\right)
\end{array}
$$

A. $x \in[-4,0]$
B. $x \in[2,4]$
(C.) $x \in[0,2]$
D. $x \in[0,2]$
E. There are no Real solutions.

$$
-30 x+105=30 x+40
$$

$$
105=60 x+40
$$

