11. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

No more than 9 units from the number -2 .
A. $[7,11]$
(B.) $[-11,7]$
C. $(-11,7)$
D. $(7,11)$

$[-11,7]$
12. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
a=-2 \quad 5 x-8 \leq 7 x-4 \quad . \quad 5 x-8 \leq 7 x-4
$$

(A). $[a, \infty)$, where $a \in[-0.2,2.9]$
B. $[a, \infty)$, where $a \in[-5,1]$
C. $(-\infty, a]$, where $a \in[0,7]$
D. $(-\infty, a]$, where $a \in[-3.3,1.6]$
E. $(-\infty, \infty)$

$\frac{-5 x-5 x}{-8 \leq 2 x-4}$

$-8 \leq 2 x$
+4
$\frac{4}{2} \leq \frac{2 x}{2}$

13. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
\begin{gathered}
\left(x-\frac{5}{2}>\frac{7 x}{8}-\frac{3}{2}\right) 8 \\
a=8 \quad 8\left(x-\frac{5}{2}\right)>8\left(\frac{7 x}{8}-\frac{3}{2}\right)
\end{gathered}
$$

A. $(-\infty, a)$, where $a \in[-10,-6]$
B. (a, ∞), where $a \in[-10,-4]$

O (a, ∞), where $a \in[7,11]$
D. $(-\infty, a)$, where $a \in[7,9]$
E. There is no solution to the inequality.

Module 3 - Inequalities
Progress Exam 1
14. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$-4+5 x>6 x$

A. $(-\infty, a) \cup(b, \infty)$, where $a \in[-7.3,-5.4]$ and $b \in[3.4,4.7]-4>x$ oR $6 b x$
(B. $(-\infty, a) \cup(b, \infty)$, where $a \in[-4.3,-2.1]$ and $b \in[5.3,6.4]$
C. $(-\infty, a] \cup[b, \infty)$, where $a \in[-7.6,-5.3]$ and $b \in[3,5]$
D. $(-\infty, a] \cup[b, \infty)$, where $a \in[-5.7,-2.8]$ and $b \in[5,8]$

E. $(-\infty, \infty)$
15. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
\begin{gathered}
\left(-6-7 x<\frac{-24 x+6}{4} \leq 8-9 x\right)^{4} \\
a=-7.5 \quad b=2.1 \overline{6} \quad 4(-6-7 x)<4\left(\frac{-24 x+6}{4}\right) \leq 4(8-9 x)
\end{gathered}
$$

A. $[a, b)$, where $a \in[-10,-6]$ and $b \in[-1,5] \quad-24-28 x<-24 x+6 \leq 32-36 x$
(B.) $(a, b]$, where $a \in[-11,-6]$ and $b \in[2,5]$
C. $[a, b)$, where $a \in[-6,1]$ and $b \in[5,8]$
D. $(a, b]$, where $a \in[-5,-1]$ and $b \in[7,16]$
E. There is no solution to the inequality.
$-24-28 x<-24 x+6$
$+28 x+28 x$
$-24<4 x+6$
$-6 \quad-6$
$-\frac{30}{4}<\frac{4 x}{4}$
$-\frac{15}{2}<x$

