Module 4 - Quadratic Equations
Progress Exam 1
16. Write the equation of the graph presented below in the form $f(x)=a x^{2}+b x+c$, assuming $a=1$ or $a=-1$. Then, choose the intervals that a, b, and c belong to.

* Parabola opens up $\Rightarrow a>0$
 $\Rightarrow a=1$

$$
\left.\begin{array}{lll}
\quad a=1 & b=-8 & c=6
\end{array} \quad \begin{array}{ll}
f(x)=(x-4)(x-4)-10 \\
\text { A. } a \in[0.4,1.9], & b \in[7,9], \text { and } \quad c \in[24,29]
\end{array}\right) f(x)=x^{2}-4 x-4 x+16-100
$$

D. $a \in[0.4,1.9], \quad b \in[-13,-7]$, and $\quad c \in[5,7]$
E. $a \in[-2.8,-0.5], \quad b \in[7,9]$, and $\quad c \in[5,7]$

Module 4 - Quadratic Equations
Progress Exam 1
18. Factor the quadratic below. Then, choose the intervals that contain the constants in the form $(a x+b)(c x+d) ; b \leq d$.

$$
\begin{aligned}
64 x^{2} & =(8 x)^{2} \\
9 & =3^{2}
\end{aligned}
$$

$$
a=8 \quad b=3 \quad c=8 \quad d=3 \quad \begin{aligned}
& \text { DOES } 2(8 x)(3)=48 ? \\
& (16 x)(3)=48
\end{aligned}
$$

A. $a \in[0.5,1.5], \quad b \in[2,5], \quad c \in[63.5,64.5]$, and $d \in[1.5,3.5]$ YES!
B. $a \in[0.5,1.5], \quad b \in[-3.5,-1.5], \quad c \in[63.5,64.5]$, and $\quad d \in[-4.5,-2.5] a^{2}+2 a b+b^{2}$
C. $a \in[15.5,17], \quad b \in[2,5], \quad c \in[3,4.5]$, and $d \in[1.5,3.5]=(a+b)^{2}$ (1). $a \in[7,9], \quad b \in[2,5], \quad c \in[7,8.5]$, and $d \in[1.5,3.5] \quad 64 x^{2}+48 x+9$
E. $a \in[3,4.5], \quad b \in[2,5], \quad c \in[15,17]$, and $\quad d \in[1.5,3.5]=(8 x)^{2}+2(8 x)(3)+3^{2}$

$$
=(8 x+3)^{2}
$$

19. Solve the quadratic equation below. Then, choose the intervals that the solutions x_{1} and x_{2} belong to, with $z_{1} \leq z_{2}$.

$$
144 x^{2}-16=0
$$

$$
* a^{2}-b^{2}=(a+b)(a-b)
$$

$$
x_{1}=-0 . \frac{1}{3}
$$

$$
x_{2}=0 . \overline{3}
$$

$$
144 x^{2}-16=0
$$

$$
(12 x)^{2}-4^{2}=0
$$

A. $x_{1} \in[-0.2,-0.05]$ and $x_{2} \in[0.99,1.09]$
B. $x_{1} \in[-0.07,0]$ and $x_{2} \in[3.83,4.02]$
C. $x_{1} \in[-0.8,-0.65]$ and $x_{2} \in[0.06,0.3]$
D. $x_{1} \in[-4.13,-3.98]$ and $x_{2} \in[-0.07,0.05]$
(E.) $x_{1} \in[-0.52,-0.15]$ and $x_{2} \in[0.28,0.41]$

20. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_{1} \leq x_{2}$ (if they exist).

$$
-7 x^{2}+7 x+7=0
$$

$$
\begin{aligned}
& x_{1}=-0.618 \\
& x_{1} \in[-3.6,-1.5] \text { and } x_{2} \in[0.5,0.7]
\end{aligned} \quad \begin{aligned}
& 1.618 \\
& \mathrm{x}=\frac{-7 \pm \sqrt{7^{2}-4(-7)(7)}}{2(-7)}
\end{aligned}
$$

(B) $x_{1} \in[-1.6,0.1]$ and $x_{2} \in[1.5,2.5]$
C. $x_{1} \in[-11.4,-8.8]$ and $x_{2} \in[3.7,4.7]$
D. $x_{1} \in[-5.3,-4.1]$ and $x_{2} \in[11.3,11.9]$
E. There are no Real solutions. $\quad x=\frac{-7 \pm \sqrt{245}}{-14}=\frac{-7 \pm \sqrt{49 \cdot 5}}{-14}$

Spring 2019

$$
x=\frac{-7 \pm 7 \sqrt{5}}{-14}=\frac{-7}{-14} \pm \frac{7 \sqrt{5}}{-14}=\frac{-14}{\frac{1}{2} \pm \frac{\sqrt{5}}{-2}}
$$

