

Module 4 - Quadratic Equations

18. Factor the quadratic below. Then, choose the intervals that contain the constants in $64x^{2} = (8x)^{2}$ the form (ax + b)(cx + d); b < d. $9 = 3^{2}$ $64x^2 + 48x + 9$ DOES 2(8x)(3)= 48? _{b =} 3 8 (16x)(3) = 48V8 3 YESI A. $a \in [0.5, 1.5], b \in [2, 5], c \in [63.5, 64.5], and d \in [1.5, 3.5]$ B. $a \in [0.5, 1.5], b \in [-3.5, -1.5], c \in [63.5, 64.5], and d \in [-4.5, -2.5]$ C. $a \in [15.5, 17], b \in [2, 5], c \in [3, 4.5], and d \in [1.5, 3.5]$ $= (9+b)^{2}$ $64x^{2} + 48x + 9$ $(D) a \in [7,9], b \in [2,5], c \in [7,8.5], and d \in [1.5,3.5]$ E. $a \in [3, 4.5], b \in [2, 5], c \in [15, 17], and <math>d \in [1.5, 3.5] = (8x)^2 + 2(8x)(3) + 3^2$ $= (8x+3)^{2}$ 19. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to with x_2 $144x^2 - 16 = 0$ $44x^2 - 16 = 0$ $144x^2 - 16 = 0$ and x_2 belong to, with $z_1 \leq z_2$. $x_2 = \left| \mathbf{0}, \mathbf{\overline{3}} \right|$ $(12x)^2 - 4^2 = 0$ $x_1 = [-0.3]$ A. $x_1 \in [-0.2, -0.05]$ and $x_2 \in [0.99, 1.09]$ (12x+4)(12x-4)=0B. $x_1 \in [-0.07, 0]$ and $x_2 \in [3.83, 4.02]$ 12x+4=0 12x-4=0 C. $x_1 \in [-0.8, -0.65]$ and $x_2 \in [0.06, 0.3]$ |2x = -4|12x = 4D. $x_1 \in [-4.13, -3.98]$ and $x_2 \in [-0.07, 0.05]$ $x = -\frac{4}{12}$ $x = \frac{4}{12}$ (E.) $x_1 \in [-0.52, -0.15]$ and $x_2 \in [0.28, 0.41]$

20. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-7x^{2} + 7x + 7 = 0$$

$$x_{1} = -0.648$$

$$x_{2} = 1.648$$

$$x_{2} = 1.648$$

$$x_{2} = -7 \pm \sqrt{7^{2} - 4(-7)(7)}$$

$$x_{1} \in [-3.6, -1.5] \text{ and } x_{2} \in [0.5, 0.7]$$

$$x_{1} \in [-1.6, 0.1] \text{ and } x_{2} \in [1.5, 2.5]$$

$$x_{1} \in [-11.4, -8.8] \text{ and } x_{2} \in [3.7, 4.7]$$

$$x_{2} = -7 \pm \sqrt{49 + 146}$$

$$-14$$

$$x_{1} \in [-5.3, -4.1] \text{ and } x_{2} \in [11.3, 11.9]$$

$$x_{2} = -7 \pm \sqrt{245} = -7 \pm \sqrt{49 \cdot 5}$$

$$-14$$
Spring 2019
$$x_{1} = -7 \pm 7\sqrt{5} = -7 \pm \sqrt{79 \cdot 5}$$

$$-14$$
Version B