1. Choose the smallest set of Real numbers that the number below belongs to.

$$
\begin{aligned}
-\sqrt{\frac{450}{5}}=-\sqrt{90} & \approx-9.4868 \ldots \\
& \sim \\
& \text { NON-REPEATING, } \\
& \text { NON-TERMINATING }
\end{aligned}
$$

A. Rational
C. Integer
D. Not a Real number
E. Whole
2. Simplify the expression below and choose the interval the simplification is contained within.
-127.92
A. $[-54.94,-54.61]$
B. $[-127.08,-126.62]$
C. $[-128.05,-127.53]$
D. $[-71.58,-70.93]$
E. $[142.34,143.28]$

$$
\begin{aligned}
& 8-1 \div 13 * 12-\underbrace{(15 * 9)} \\
= & 8-1 \div 13 * 12-135
\end{aligned}
$$

$$
=8-\frac{1}{13} * 12-135
$$

$$
=8-\frac{12}{13}-135
$$

$$
=8-0.92-135=-127.92
$$

3. Choose the smallest set of Complex numbers that the number below belongs to.

$$
\frac{-9}{-8}+7 i^{2}
$$

A. Pure Imaginary
(B) Rational
C. Nonreal Complex
D. Not a Complex Number
$=\frac{9}{8}+7(-1)$
E. Irrational

$$
\begin{aligned}
& =\frac{9}{8}-7 \\
& =\frac{9}{8}-\frac{56}{8}=-\frac{47}{8}
\end{aligned}
$$

Module 1 - Real and Complex Numbers
Progress Exam 1
4. Simplify the expression below into the form $a+b i$. Then, choose the intervals that a and b belong to.

5. Simplify the expression below into the form $a+b i$. Then, choose the intervals that a and b belong to.

$$
\left(\frac{-18-44 i}{6-5 i}\right)\left(\frac{6+5 i}{6+5 i}\right)
$$

$$
a=1.836 \quad b=-5.803
$$

A. $a \in[1.4,2.5]$ and $b \in[-357,-352.8]$
B. $a \in[111.7,113]$ and $b \in[-10.1,-3.8]$
C. $a \in[1.4,2.5]$ and $b \in[-10.1,-3.8]$
D. $a \in[-4.8,0]$ and $b \in[8.7,12.8]$

E. $a \in[-8.2,-3.9]$ and $b \in[-3.6,-2]$

$$
\begin{aligned}
&=\frac{-108-264 i-90 i+220}{36+25} \\
&=\frac{112-354 i}{61}=\frac{112}{61}-\frac{354}{61} i \\
&=1.836-5.803 i
\end{aligned}
$$

Module 2 - Linear Equations
6. First, find the equation of the line containing the two points below. Then, write the equation as $y=m x+b$ and choose the intervals that contain m and b.

$$
\downarrow\left(x_{1}, y_{1}\right) \quad \downarrow\left(x_{2}, y_{2}\right)
$$

$$
L^{(5,-9)} \text { and }(-2,-7)
$$

$$
m=-0.286 \quad b=-7.57 \quad \text { I. SLOPE: } m=\frac{-7-(-9)}{-2-5}=\frac{2}{-7}=-0.286
$$

(A.) $m \in[-0.65,0.2]$ and $b \in[-8.2,-7.2] Y=m x+b \Rightarrow y=-\frac{2}{7} x+b$
B. $m \in[-1,2]$ and $b \in[6.7,8.9]$
C. $m \in[-1,4]$ and $b \in[-5.7,-4]$
D. $m \in[-2,3]$ and $b \in[-15.1,-13.5]$
E. $m \in[0.01,0.51]$ and $b \in[-7.2,-5.8]$

$$
\begin{aligned}
& -9=-\frac{2}{7}(5)+b \\
& -9=\frac{-10}{7}+b y=-0.286 x-7.57 \\
& +\frac{10}{7}=+\frac{10}{7} \\
& -9+\frac{10}{7}=b \Rightarrow-7.57=b
\end{aligned}
$$

7. Write the equation of the line in the graph below in the form $A x+B y=C$. Then, choose the intervals that contain A, B, and C.

$m=\frac{2-(-3)}{0-(-3)}=\frac{5}{3}$

$$
\begin{aligned}
\Rightarrow y & =m x+b \\
y & =\frac{5}{3} x+2
\end{aligned}
$$

A. $A \in[0.79,2.05], \quad B \in[-1.1,-0.85]$, and $C \in[-2.7,-1.4]-\frac{5}{3} x=-\frac{5}{3} x$
B. $A \in[2.54,3.25], \quad B \in[4.81,5.2]$, and $C \in[8.6,10.5]$
C. $A \in[0.16,1.27], \quad B \in[0.98,2.44]$, and $C \in[8.6,10.5]$

$$
\left(-\frac{5}{3} x+y=2\right)^{3}
$$

D. $A \in[3.95,6.21], \quad B \in[-3.45,-2.23]$, and $C \in[-6.3,-5.4]$
(E.) $A \in[-5.39,-4.21], \quad B \in[2.19,3.31]$, and $C \in[3.7,8]$

$$
(-5 x+3 y=6)(-1)
$$

$$
5 x-3 y=-6
$$

Module 2 - Linear Equations
Progress Exam 1
8. Find the equation of the line described below. Write the linear equation as $y=m x+b$ and choose the intervals that contain m and b.

Perpendicular to $5 x+6 y=14$ and passing through the point $(2,-10)$.
9. Solve the equation below. Then, choose the interval that contains the solution.

$$
\xrightarrow[-3(-9 x-12)]{\text { IN }}
$$

$x=0.7586$

A. $x \in[-2.24,0.18]$
B. $x \in[1.29,2.32]$
C. $x \in[0.21,0.41]$
(D.) $x \in[0.39,0.96]$
E. There are no Real solutions.

$$
(-3)(-9 x)+(-3)(-12)=(-7)(-8 x)+(-7)(-2)
$$

$$
27 x+36=56 x+14
$$

$$
-27 x=-27 x
$$

$$
36=29 x+14
$$

$$
\begin{aligned}
& -14=-14 \\
& \frac{22}{29}=\frac{29 x}{29}
\end{aligned} \quad \begin{aligned}
& \frac{22}{29}=x \\
& 0.7586=x
\end{aligned}
$$

10. Solve the linear equation below. Then, choose the interval that contains the solution.

* LCD is 30

$$
\begin{gathered}
\left(\frac{5 x-4}{2}-\frac{7 x+3}{5}=\frac{-5 x+7}{6}\right) 30 \\
x=1.948 \quad 1536\left(\frac{5 x-4}{x}\right)-36\left(\frac{7 x+3}{8}\right)=30\left(\frac{-5 x+7}{8}\right)
\end{gathered}
$$

A. $x \in[7.19,7.27]$
B. $x \in[1.94,1.96]$

$$
15(5 x-4)-6(7 x+3)=5(-5 x+7)
$$

C. $x \in[1.22,1.29]$
D. $x \in[1.32,1.35]$

$$
33 x-78=-25 x+35
$$

E. There are no Real solutions.

$$
75 x-60-42 x-18=-25 x+35
$$

$$
+25 x=+25 x
$$

$$
58 x-78=35
$$

$$
+78=+78
$$

Spring 2019

$$
\begin{aligned}
& 58 x=113 \\
& x=\frac{113}{58}=1.948
\end{aligned}
$$

Version C

$$
\begin{aligned}
& \begin{array}{l}
m=1.2 \quad b=-12.4 \quad \begin{array}{l}
9 x+6 y=14 \\
\frac{-5 x}{5 x} \\
m \in[-1,4] \text { and } b \in[-3,1] \\
m \in[0.72,1.19] \text { and } b \in[-15,-11]
\end{array} \quad \frac{6 y}{6}=\frac{-5 x+14}{6}
\end{array} \\
& \text { B. } m \in[0.72,1.19] \text { and } b \in[-15,-11] \\
& \text { C. } m \in[-1.66,-0.66] \text { and } b \in[-10,-7] \\
& \text { (D.) } m \in[0.89,1.52] \text { and } b \in[-13,-10] \\
& \text { E. } m \in[0,3] \text { and } b \in[10,13] \\
& \text { A. } m \in[-1,4] \text { and } b \in[-3,1] \\
& \begin{array}{l}
y=\frac{-5}{6} x+\frac{14}{6} \\
\text { SLOPE }=-\frac{5}{6}
\end{array}
\end{aligned}
$$

11. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

No more than 5 units from the number 7 .
A. $[-2,12]$
B. $(2,12)$
(C) $[2,12]$
D. $(-2,12)$

12. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

13. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.
A. $(-\infty, a]$, where $a \in[0,6]$
B. $[a, \infty)$, where $a \in[1.4,4.3]$
C. $[a, \infty)$, where $a \in[-7,1]$
D. $(-\infty, a]$, where $a \in[-6.2,-1.1]$
E. $(-\infty, \infty)$

$$
L C D: 36
$$

$$
\xrightarrow[-1.1163]{(-1.1163, \infty)}
$$

A. $(-\infty, a)$, where $a \in[-1,3]$
B. $(-\infty, a)$, where $a \in[-4,1]$
C. (a, ∞), where $a \in[-5,1]$
D. (a, ∞), where $a \in[0,3]$
E. There is no solution to the inequality. $86 x+36>-60$

Spring 2019

$$
\begin{aligned}
& \left(-\frac{10 x}{9}+1>-\frac{7 x}{2}-\frac{5}{3}\right)^{36} \\
& a=-1.1163 \quad 36\left(-\frac{10 x}{9}+1\right)>36\left(-\frac{7 x}{2}-\frac{5}{3}\right) \\
& 46\left(-\frac{10 x}{4}\right)+36>36\left(-\frac{7 x}{x}\right)+36\left(-\frac{5}{83}\right) \\
& -40 x+36>-126 x-60 \\
& -36-36 \\
& \frac{86 x}{86}>\frac{-96}{86} \quad \text { Version C } \\
& x>-\frac{96}{86} \Rightarrow x>-1.1163
\end{aligned}
$$

14. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
\begin{aligned}
&-6+5 x>7 x \\
&-5 x>5 x \\
& \frac{-6}{2}>\frac{2 x}{2} \\
&-3>x
\end{aligned}
$$

$$
\frac{-4 x-4 x}{\frac{9<2 x}{2}}
$$

A. $(-\infty, a) \cup(b, \infty)$, where $a \in[-3.7,-2.8]$ and $b \in[3.2,5.6]$

$$
\frac{9}{2}<x \Rightarrow 4.5<x
$$

B. $(-\infty, a] \cup[b, \infty)$, where $a \in[-3.3,-1.7]$ and $b \in[3.1,4.7]-3>x$ or $4.5<x$
C. $(-\infty, a] \cup[b, \infty)$, where $a \in[-4.7,-3.8]$ and $b \in[2.2,4.4]$ OR $4.5<x$
D. $(-\infty, a) \cup(b, \infty)$, where $a \in[-5.7,-4.1]$ and $b \in[1.5,4]$

$$
9+4 x<6 x
$$

E. $(-\infty, \infty)$

$$
(-\infty,-3) \cup(4.5, \infty)
$$

15. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
\begin{gathered}
\left(6+4 x<\frac{37 x-9}{7} \leq 6+5 x\right) 7 \\
a=5 . \overline{6} \quad b=25.5 \quad 7(6+4 x)<7\left(\frac{37 x-9}{7}\right) \leq 7(6+5 x)
\end{gathered}
$$

A. $(a, b]$, where $a \in[-30,-24]$ and $b \in[-10,-3] \quad 42+28 x<37 x-9 \leq 42+35 x$
B. $[a, b)$, where $a \in[1,6]$ and $b \in[25,26]$

$$
42+28 x<37 x-9
$$

C. $[a, b)$, where $a \in[-30,-23]$ and $b \in[-7,1]$
(D.) $(a, b]$, where $a \in[3,9]$ and $b \in[23,27]$

AND
E. There is no solution to the inequality. $\quad 37 x-9 \leq 42+35 x$

$$
\begin{aligned}
& 42+28 x<37 x-9 \\
& -28 x-28 x \\
& 42<9 x-9 \\
& \frac{+9+9}{\frac{51}{9}<\frac{9 x}{9}} \\
& \frac{51}{4}<x \Rightarrow 5 . \overline{6}<x \\
& 37 x-9 \leq 42+35 x \\
& \frac{-35 x}{}-35 x \\
& \frac{+9+9}{\frac{2 x}{2} \leq \frac{51}{2}} \\
& x \leq \frac{51}{2} \\
& x \leq 25.5 \\
& x>5 . \overline{6} \text { AND } x \leq 25.5 \\
& 5 . \overline{6}<x \leq 25.5 \\
& (5 . \overline{6}, 25.5]
\end{aligned}
$$

