Module 1 Lecture Notes

MAC1105

Summer B 2019

1 Real and Complex Numbers

1.1 Subgroups of Real Numbers

Definition	
A set is a collection of	An
is an object that is in a specified set. An interval is a collection	of

Note 1. We can describe the elements of a set using set builder notation. An example of this is shown below.

Example 1. To describe the set of all freshman at the University of Florida in set builder notation, we would write:

Natural Numbers
The natural numbers are the numbers we use for counting:
Whole Numbers
The set of natural numbers plus zero is the set of whole numbers:

The set of **integers** is the set of negative natural numbers plus the whole numbers:

Rational Numbers

The set of **rational numbers** includes fractions written as $\frac{m}{n}$, where m, n are _____ and $n \neq 0$:

Irrational Numbers
The set of irrational numbers is the set of numbers that are not, are
non, and are non

Real Numbers	
The set of real numbers is the set of rational and irrational numbers together:	

Definition

Let A and B be sets. Say that A is a ______ of B, written $A \subseteq B$, if every element of A is an element of B.

Example 2. Classify the following numbers in the chart provided:

$$-\frac{21}{7},\frac{21}{7},\frac{\pi}{4},\frac{4}{\pi},\frac{0}{\pi},\frac{\pi}{0},\sqrt{9},\sqrt{-9},\sqrt{2},\sqrt{-2}$$

Example 3. Which of the following is the smallest set of real numbers that $\sqrt{\frac{0}{36}}$ belongs to?

- 1. Natural Number
- 2. Whole Number
- 3. Integer
- 4. Rational
- 5. Irrational
- 6. Not a Real Number

$\textbf{Example 4.} \ \ \textbf{Which of the following is the smallest set of real numbers that 1.324324324324324}$
belongs to?
1. Natural Number
2. Whole Number
3. Integer
4. Rational
5. Irrational
6. Not a Real Number

1.2 Subgroups of Complex Numbers

Definition
A complex number is a number of the form $\underline{\hspace{1cm}}$, where a is the real part of the
complex number and b is the part of the complex number.
Definition
Let $a+bi$ be a complex number. If $a=0$ and if $b\neq 0$, then $a+bi$ is called a
number. An imaginary number is an even root of a negative integer.

Example 5. Classify the following numbers in the chart provided:

$$-\frac{27}{9}+i,\sqrt{-4},\sqrt{-21},\sqrt{9},\sqrt{11},\frac{\pi}{0}i,\frac{8}{\pi}i,-\frac{24}{6},-\frac{8}{3},\frac{0}{\pi}$$

1.3 Order of Operations

The Commutative Properties:
The Associative Properties:
The Distributive Property:
Definition
Operations in mathematics must be performed in a systematic order, which can be remembered by
the acronym PEMDAS:
P
E
M
D
A
S

Note 2. In other words, to simplify mathematical expressions, we will:

1. Simplify any expressions within grouping symbols, such as () and []

- 2. Simplify any expressions containing _____ or ____
- 3. Perform _____ and division IN THE ORDER IN WHICH THEY APPEAR from left to right
- 4. Perform addition and ______ IN THE ORDER IN WHICH THEY APPEAR from left to right

Example 6. Use the order of operations (PEMDAS) to simplify the following expressions:

1.
$$12 - 10 \div (2 * 5)$$

2.
$$7 + 10^2 \div (2 * 5) + 12$$

3.
$$3(2)^2 - 4(6+2)$$

1.4 Operate on Complex Numbers

Note 3.
$$\sqrt{-a} =$$

Adding and Subtracting Complex Numbers

Adding Complex Numbers:

Subtracting Complex Numbers:

$$(a+bi) - (c+di) = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} i$$

Multiplying Complex Numbers

Multiplying Complex Numbers by Real Numbers:

$$k(a+bi) = \underline{\qquad} + \underline{\qquad} i$$

Multiplying Complex Numbers by Complex Numbers:

$$(3-4i)(2+3i)$$

Example 8. Multiply:

$$(2+3i)(4-i)$$

Definition

The complex conjugate of a complex number, (a + bi) is ______. In other words, the complex conjugate of a complex number is found by changing the sign of the imaginary part of the complex number.

Note 4. The product of a + bi with its complex conjugate, a - bi is $(a + bi)(a - bi) = a^2 + b^2$.

Dividing Complex Numbers

To divide a + bi by c + di, where c and d are both nonzero, multiply the fraction by the complex conjugate of c + di:

Example 9. Divide : $\frac{2+5i}{4-i}$