Module 1 Lecture Notes

MAC1105

Fall 2019

1 Real and Complex Numbers

1.1 Subgroups of Real Numbers

Definition		
A set is a collection of	MATHEMATICAL	OBJECTS An
ELEMENT is an o	bject that is in a specified set.	An interval is a collection of
REAL NU	MBERS	
TWE WILL LEARN A	BOUT REAL NUMBERS I	BELOW

Note 1. We can describe the elements of a set using set builder notation. An example of this is shown below.

Example 1. To describe the set of all freshman at the University of Florida in set builder notation, we would write:

Natural Numbers

The **natural numbers** are the numbers we use for counting:

£1, Z, 3, 4, ... 3

- I THE NATURAL NUMBERS DONOT INCLUDE O
- 2. THE NATURAL NUMBERS DO NOT INCLUDE NEGATIVE NUMBERS 3. SYMBOL: N

Whole Numbers

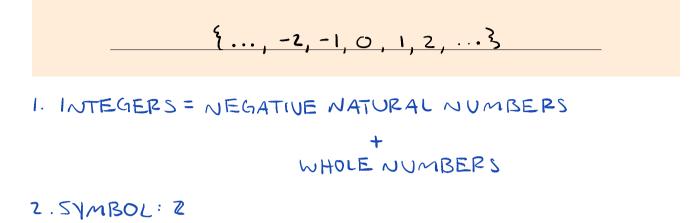
The set of natural numbers plus zero is the set of **whole numbers**:

- 1. THE WHOLE NUMBERS DO INCLUDE O
- 2. THE WHOLE NUMBERS DONOT INCLUDE NEGATIVE NUMBERS
- 3. WHOLE NUMBERS = O + NATURAL NUMBERS

4. SYMBOL: W

Integers

The set of **integers** is the set of negative natural numbers plus the whole numbers:



Rational Numbers The set of **rational numbers** includes fractions written as $\frac{m}{n}$, where m, n are <u>INTEGERS</u> and $n \neq 0$:

- 1. SYMBOL: Q
- 2. ANY INTEGER M CAN BE WRITTEN AS 1, SO ALL INTEGERS ARE RATIONAL NUMBERS
- 3. RATIONAL NUMBERS ALSO IN CLUDE REPEATING AND TERMINATING DECIMALS:
 - 0.3333 ... = 0.3 IS A REPEATING DECIMAL
 - 0.365365365 ... = 0.365 IS A REPEATING DECIMAL
 - 0.25 = 4 IS ATERMINATING DECIMAL (IT ENDS)
 - 0.1592439... IS A NONTERMINATING DECIMAL (DOES NOT END)

Irrational Numbers

The set of irrational numbers is the set of numbers that are not **RATIONAL**, are non-**REPEATING**, and are non-**TERMINATING**.

1. IN SET-BUILDER NOTATION:

{ X: X IS AREAL NUMBER AND X IS NOT ARATIONAL NUMBER 3

- 2. IPPATIONAL NUMBERS INCLUDE ANY REAL NUMBER THAT IS NOT A RATIONAL NUMBER
- 3. EXAMPLES:

TT=3.1415926...

NON-REPEATING ENON-TERMINATING

 $\sqrt{2} = 1.41421...$

NON-REPEATING ENON-TERMINATING

4. NON- EXAMPLES:

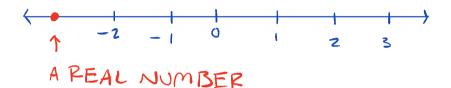
14=2

0.21532153... = 0.2153REPEATING DECIMAL Real Numbers

The set of **real numbers** is the set of rational and irrational numbers together:

1X: X IS A RATIONAL OF IRRATIONAL NUMBER 3

- 1. A NUMBER CANNOT BE BOTH RATIONAL AND IFRATIONAL
- 2. THE REAL NUMBERS CAN BE VISUALIZED ON A NUMBER LINE (THE REAL NUMBER LINE)



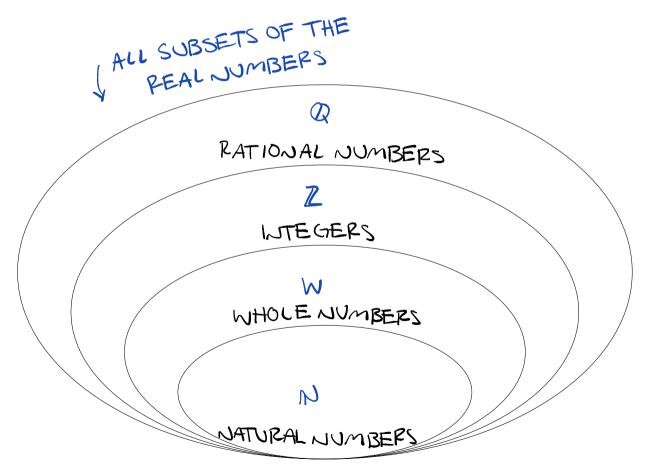
3. SYMBOL : R

* THE NUMBERS THAT ARE NOT PEAL NUMBERS COMMONLY OCCUP WHEN WE TAKE THE SQUARE POOT (OR THE EVEN POOT) OF A NEGATIVE NUMBER AND WHEN WE DIVIDE BY O (YOU CANNOT DIVIDE BY O!)

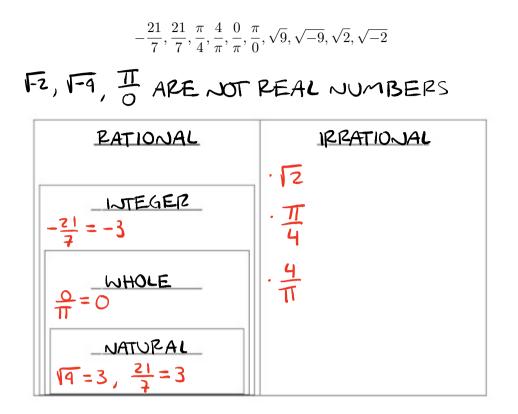
Definition

Let A and B be sets. Say that A is a $_$ **SUBSET** of B, written $A \subseteq B$, if every element of A is an element of B.

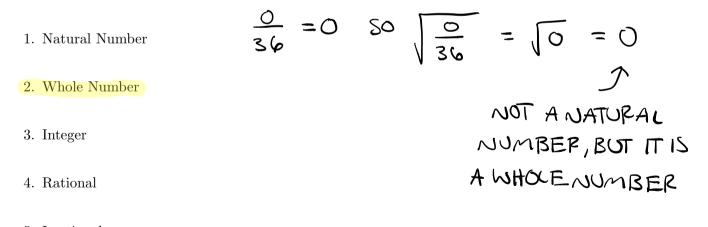
- 1. THE NATURAL NUMBERS ARE A SUBSET OF THE WHOLE NUMBERS BECAUSE EVERY NATURAL NUMBER IS ALSO A WHOLE NUMBER! {1,2,3,...} < {0,1,2,3,...}
- 2. THE WHOLE NUMBERS ARE NOT A SUBJET OF THE NATURAL NUMBERS BECAUSE O IS NOT A NATURAL NUMBER



Example 2. Classify the following numbers in the chart provided:



Example 3. Which of the following is the smallest set of real numbers that $\sqrt{\frac{0}{36}}$ belongs to?



- 5. Irrational
- 6. Not a Real Number

Example 4. Which of the following is the smallest set of real numbers that 1.324324324324324324... belongs to?

- 1. Natural Number
- 2. Whole Number

A REPEATING DECIMAL!

3. Integer

4. Rational

5. Irrational

6. Not a Real Number

* RECALL: PATIONAL NUMBERS IN CLUDE REPEATING AND TERMINATING DECIMALS

1.2 Subgroups of Complex Numbers

Definition

A complex number is a number of the form $\underline{a + bi}$, where *a* is the real part of the complex number and *b* is the $\underline{lMAGINARY}$ part of the complex number.

Definition

Let a+bi be a complex number. If a = 0 and if $b \neq 0$, then a+bi is called a **PURE**

IMAGINARY number. An imaginary number is an even root of a negative integer.

- $1. \quad \sqrt{-1} = c$
- 2. i² = 1
- 3. 4 + bi T IMAGINARY PART REAL PART
- 4. IF b=0 THEN a+bc=a+oc=a+0=a ISA REAL NUMBER
- 5. AN IMAGINARY NUMBER IS AN EVEN ROOT OF A NEGATIVE NUMBER
- 6. EVERY REAL NUMBER IS A COMPLEX NUMBER
- 7. EXAMPLES:

$$\sqrt{-2} = \sqrt{-1 \cdot 2} = \sqrt{-1} \sqrt{2} = i\sqrt{2}$$
$$\sqrt{-4} = \sqrt{-1 \cdot 4} = \sqrt{-1} \sqrt{4} = i\sqrt{4} = i2 = 2i$$

* DIVIDING BY O DOES NOT GIVE US A COMPLEX NUMBER!

3 IS NOT REAL AND NOT COMPLEX

Example 5. Classify the following numbers in the chart provided:

$$-\frac{27}{9}+i,\sqrt{-4},\sqrt{-21},\sqrt{9},\sqrt{11},\frac{\pi}{0}i,\frac{8}{\pi}i,-\frac{24}{6},-\frac{8}{3},\frac{0}{\pi}$$

★ I i IS NOT A COMPLEX NUMBER!

1.3 Order of Operations

Properties of Real Numbers

Let a, b, and c be real numbers.

The Inverse Properties:

There is a unique number 0, called the **additive identity** such that:

$$1. \quad 0 + q = q$$

2.4+0=4

There is a unique number 1, called the **multiplicative identity** such that:

- $I. \quad q \cdot I = q$
- 2. $1 \cdot 4 = 4$

The Identity Properties:

There is a unique number -a, called the **additive inverse** or **negative** of a such that:

1. q + (-q) = q - q = 0

$$2 \cdot (-q) + q = -q + q = 0$$

If $a \neq 0$, there is a unique number $\frac{1}{a}$, called the **multiplicative inverse** or **reciprocal** of a such

that: 1. $q \cdot (\frac{1}{q}) = \frac{q}{q} = 1$ 2. $(\frac{1}{q}) \cdot q = \frac{q}{q} = 1$ The Closure Property: 1. q + b is a real number (2. $q \cdot b$ is a real number

WHEN YOU ADD AND MULTIPLY REAL NUMBERS, THE RESULT IS A REAL NUMBER The Commutative Properties:

 $i \cdot a + b = b + q$ "ORDER DOES NOT MATTER" 2. $a \cdot b = b \cdot q$ The Associative Properties: $i \cdot a + (b + c) = (a + b) + c$ 2. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ The Distributive Property: $i \cdot a(b + c) = a \cdot b + a \cdot c$ 2. $(a + b) c = a \cdot c + b \cdot c$

Definition

Operations in mathematics must be performed in a systematic order, which can be remembered by the acronym PEMDAS: P - PARENTHESIS \Rightarrow DIVISION IS MULTIPLICATION E - EXPONENTS \Rightarrow SUBTRACTION IS ADDITION M - MULTIPLICATION D - DIVISION \Rightarrow PEMA A - ADDITION

S-SUBTRACTION

Note 2. In other words, to simplify mathematical expressions, we will:

1. Simplify any expressions within grouping symbols, such as () and []

- 2. Simplify any expressions containing EXPONENTS or PADICALS
- 3. Perform MULT IPLICATION and division IN THE ORDER IN WHICH THEY APPEAR from left to right
- 4. Perform addition and **SUBTRACTION** IN THE ORDER IN WHICH THEY APPEAR from left to right

Example 6. Use the order of operations (PEMDAS) to simplify the following expressions:

1.
$$12 - 10 \div (2 * 5) = 12 - 10 \div 10$$

= $12 - 10 \div 10 = 1$
= $12 - 1$
= 11

2.
$$7 + 10^{2} \div (2 * 5) + 12 = 7 + 10^{7} \div 10 + 12$$

 $= 7 + 100 \div 10 + 12$
 $= 7 + 10 + 12$
 $= 17 + 12 = 29$
3. $3(2)^{2} - 4(6+2) = 3 \cdot 2^{7} - 4 \cdot 8$
 $= 3 \cdot 4 - 4 \cdot 8$
 $= 12 - 32$
 $= -20$

1.4 Operate on Complex Numbers

Note 3.
$$\sqrt{-a} = \sqrt{-1 \cdot q} = \sqrt{-1} \cdot \sqrt{q} = \dot{\sqrt{q}}$$

Adding and Subtracting Complex Numbers

Adding Complex Numbers:

$$(a+bi) + (c+di) = (\underline{d+c}) + \underline{(b+d)} i$$

Subtracting Complex Numbers:

$$(a+bi) - (c+di) = (a-c) + (b-d) i$$

Multiplying Complex Numbers

Multiplying Complex Numbers by Real Numbers:

$$k(a+bi) = \underline{\mathbf{L}} \mathbf{\Delta} + \underline{\mathbf{K}} \mathbf{b} i$$

Multiplying Complex Numbers by Complex Numbers: FOIL! "FIPST, OUTER, INNER, LAST"

$$(a+bi)(c+di) = ac + adi + bci + bdi^{2}$$

= ac + (ad+bc)i + bd(-1)
= (ac - bd) + (ad + bc)i

Example 7. Multiply:

$$(3-4i)(2+3i)$$

$$= 3\cdot 2 + 3\cdot 3i + (-4i)\cdot 2 + (-4i)\cdot (3i)$$

$$= 6 + 4i - 8i - 12i^{2}$$

$$= 6 + (4-8)i - 12(-1)$$

$$= 6 + i + 12 = 18 + i$$

Example 8. Multiply:

$$= 2 \cdot 4 + 2(-i) + 3i \cdot 4 + (3i) \cdot (-i)$$

= 8 - 2i + 12i - 3i²
= 8 + (-2 + 12) i - 3(-1)
= 8 + 10i + 3 = 11 + 10i

Definition

The complex conjugate of a complex number, (a + bi) is $\underline{4-bi}$. In other words, the complex conjugate of a complex number is found by changing the sign of the imaginary part of the complex number.

Note 4. The product of a + bi with its complex conjugate, a - bi is $(a + bi)(a - bi) = a^2 + b^2$. $(a+bi)(a-bi) = a \cdot a + a(-bi) + a(bi) + (bi)(-bi)$ $= a^2 - abi + abi - b^2 i^2$ $= a^2 - b^2(-1) = a^2 + b^2$

EXAMPLES: 1. COMPLEX CONJUGATE OF 1+3: 15 1-3:

2. COMPLEX CONJUGATE OF -21 15 - (-21) = 21

Dividing Complex Numbers

To divide a + bi by c + di, where c and d are both nonzero, multiply the fraction by the complex

conjugate of
$$c + di$$
:

$$\left(\frac{a+bi}{c+di}\right)\left(\frac{c-di}{c-di}\right) = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac - adi + bci - bdi^{2}}{c^{2}+d^{2}}$$
$$= \frac{ac + (-ad + bc)i - bd(-1)}{c^{2}+d^{2}}$$
$$= \frac{(ac + bd) + (bc - ad)i}{c^{2}+d^{2}}$$

Example 9. Divide: $\frac{2+5i}{4-i}$ *COMPLEX CONJUGATE OF 4-i IS 4+i: $\left(\frac{2+5i}{4-i}\right)\left(\frac{4+i}{4+i}\right) = \frac{(2+5i)(4+i)}{(4-i)(4+i)}$ $= \frac{2\cdot4+2\cdot i+5i\cdot 4+5i\cdot i}{4^2+1^2}$ $= \frac{8+2i+20i+5i^2}{16+1}$ $= \frac{8+(2+20i)+5(-1)}{17}$ $= \frac{8+22i-5}{17} = \frac{3+22i}{17} = \frac{3}{17} + \frac{22i}{17}$