Module 1 Lecture Notes

MAC1105

Summer B 2019

1 Real and Complex Numbers

1.1 Subgroups of Real Numbers

Definition

A set is a collection of MATHEMATICAL OBJECTS An
ELEMENT is an object that is in a specified set. An interval is a collection of REAL NUMBERS.

TWE WILL LEAR ABOUT REAL NUMBERS BELOW

Note 1. We can describe the elements of a set using set builder notation. An example of this is shown below.

Example 1. To describe the set of all freshman at the University of Florida in set builder notation, we would write:

Natural Numbers

The natural numbers are the numbers we use for counting:

$$
\{1,2,3,4, \ldots\}
$$

1. THE NATURAL NUMBERS DONOT INCLUDE O

2. THE NATURAL NUMBERS DO NOT INCL UDE NEGATIUE NUMBERS

 3. SYMBOL: N
Whole Numbers

The set of natural numbers plus zero is the set of whole numbers:

$$
\{0,1,2,3,4, \ldots\}
$$

1. THE WHOLE NUMBERS DO InCLUDE O
2. THE WHOLE NUMBERS DON OT INLLUDE NEGATIVE NUMBERS
3. WHOLE NUMBERS $=0+$ NATURAL NUMBERS
4. SYMBOL: W

Integers
The set of integers is the set of negative natural numbers plus the whole numbers:

1. INTEGERS = NEGATIUE NATURAL NUMBERS

$$
\begin{gathered}
+ \\
\text { WHOLE NUMBERS }
\end{gathered}
$$

2. SYMBOL: \mathbb{Z}

Rational Numbers
The set of rational numbers includes fractions written as $\frac{m}{n}$, where m, n are INTE GERS and $n \neq 0$:

$$
\left\{x: x=\frac{m}{n}, m \text { AND } n \text { ARE INTEGERS AND } n \neq 0\right\}
$$

1. SYMBOL: \mathbb{Q}
2. ANY INTEGER M CAN BE WRITTENAS $\frac{m}{1}$, SO ALL INTEGERS ARE RATIONAL NUMBERS
3. RATIONAL NUMBERS ALSO INCLUDE REPEATING AND TERMINATING DECIMALS:
$0.3333 \ldots=0 . \overline{3}$ IS AREPEATING DECIMAL
$0.365365365 \ldots=0 . \overline{365}$ IS A REPEATING DECIMAL
$0.25=\frac{1}{4}$ IS ATERMINATINGDECIMAL (TENDS)
$0.1592439 \ldots$ IS ANONTERMINATINGDECIMAL (DOE SNOT END)

Irrational Numbers
The set of irrational numbers is the set of numbers that are not \qquad Rational , are non-REPEATING, and are non-TERMINATING.

1. In SET-BUILDER NOTATION:

$$
\{x: x \text { IS AREAL NUMBER AND } x \text { IS NUT ARATIONAL NUMBER }\}
$$

2. Ir rational numbers include any real number that is not a rat ional number
3. EXAMPLES:

$$
\begin{aligned}
& \pi=3.1415926 \ldots \\
& \text { NON-REPEATING E NON-TERMINATING } \\
& \sqrt{2}=1.41421 \ldots \\
& \text { NON -REPEATING } \dot{\text { E NON-TERMINATING }}
\end{aligned}
$$

4. NON-EXAMPLES:

$$
\sqrt{4}=2
$$

0

$$
\begin{aligned}
21532153 \ldots= & 0 . \overline{2153} \\
& \text { REPEATINGDECIMAL }
\end{aligned}
$$

Real Numbers
The set of real numbers is the set of rational and irrational numbers together:
\{x: x IS ARATIONALORIRRATIONAL NUMBER $\}$

1. A number cannot be bothrational and irrational
2. The real numbers can be visualized on a number line (Thermal number line)

a real number
3. SYMBOL: \mathbb{R}

* the numbers that are not real numbers commonly occur when we take the sQuare root (Or the even root) OF a negative number and when we DIVIDE BY O (YOU (ANNOT DIVIDE BY O!)

Definition
Let A and B be sets. Say that A is a \qquad SUBSET of B, written $A \subseteq B$, if every element of A is an element of B.

1. The nature al numbers are a subset of the whole NUMBERS BECAUSE EVERY NATURAL NUMBER IS ALSO A WHOLE NUMBER! $\{1,2,3, \ldots\} \leq\{0,1,2,3, \ldots\}$
2. THE WHOLE NUMBERS ARE NOT A SUBSET OF THE NATURAL NUMBERS BECAUSE O IS NOT A NATURAL NUMBER

Example 2. Classify the following numbers in the chart provided:

$$
\begin{gathered}
-\frac{21}{7}, \frac{21}{7}, \frac{\pi}{4}, \frac{4}{\pi}, \frac{0}{\pi}, \frac{\pi}{0}, \sqrt{9}, \sqrt{-9}, \sqrt{2}, \sqrt{-2} \\
\sqrt{-2}, \sqrt{-9}, \frac{\pi}{O} \text { ARE NOT REAL NUMBERS } \\
\text { RATIONAL } \\
\begin{array}{l|l|}
\hline-1 \text { RTEGER } \\
-\frac{21}{7}=-3 & \sqrt{2} \\
\begin{array}{l}
\frac{\pi}{4} \\
\frac{0}{\pi}=0 \\
\begin{array}{l}
\text { WHOLE } \\
\sqrt{4}=3, \frac{21}{7}=3
\end{array} \\
\hline
\end{array}
\end{array} . \begin{array}{l}
\frac{4}{\pi} \\
\hline
\end{array}
\end{gathered}
$$

Example 3. Which of the following is the smallest set of real numbers that $\sqrt{\frac{0}{36}}$ belongs to?

1. Natural Number
2. Whole Number
3. Integer
4. Rational
5. Irrational
6. Not a Real Number

$$
\frac{0}{36}=0 \text { so } \sqrt{\frac{0}{36}}=\sqrt{0}=0
$$

$$
\jmath
$$

not a natural NUMBER, BUT IT IS A WHOLE NUMBER

Example 4. Which of the following is the smallest set of real numbers that $1.324324324324324 \ldots$ belongs to?

1. Natural Number

$$
1.324324 \ldots=1 . \overline{324}
$$

2. Whole Number
a repeat ing decimal!
3. Integer
4. Rational
5. Irrational
6. Not a Real Number

* RECall: Rational numbers in clude repeating and TERminating decimals
1.2 Subgroups of Complex Numbers

Definition
A complex number is a number of the form $a+b i$ \qquad , where a is the real part of the complex number and b is the IMAGINARY part of the complex number.

Definition
Let $a+b i$ be a complex number. If $a=0$ and if $b \neq 0$, then $a+b i$ is called a \qquad Pure IMAGINARY number. An imaginary number is an even root of a negative integer.

1. $\sqrt{-1}=i$
2. $i^{2}=-1$
3. $\begin{aligned} & a+b i \\ & \hat{i} \text { REAL PART imAGINARY PART }\end{aligned}$
4. IF $b=0$ THEN $a+b i=a+0 i=a+0=a$ IS AREAL NUMBER
5. AN IMAGINARY NUMBER IS ANEVEN ROOT OF A NEGATIVE NUMBER
6. EVERY REAL NUMBER IS A COMPLEX NUMBER
7. EXAMPLES:

$$
\begin{aligned}
& \sqrt{-2}=\sqrt{-1 \cdot 2}=\sqrt{-1} \sqrt{2}=i \sqrt{2} \\
& \sqrt{-4}=\sqrt{-1 \cdot 4}=\sqrt{-1} \sqrt{4}=i \sqrt{4}=i 2=2 i
\end{aligned}
$$

A DIVIDING BY O DOES NOT GIVE US A COMPLEX NUMBER!

$\frac{3}{0}$ is NOT REAC AND NOT COMPLEX

Example 5. Classify the following numbers in the chart provided:

$$
-\frac{27}{9}+i, \sqrt{-4}, \sqrt{-21}, \sqrt{9}, \sqrt{11}, \frac{\pi}{0} i, \frac{8}{\pi} i,-\frac{24}{6},-\frac{8}{3}, \frac{0}{\pi}
$$

$\star \frac{\pi}{O} i$ IS NOT A COMPLEX NUMBER!

1.3 Order of Operations

Properties of Real Numbers
Let a, b, and c be real numbers.
The Inverse Properties:
There is a unique number 0 , called the additive identity such that:

1. $0+a=a$
2. $a+0=a$

There is a unique number 1 , called the multiplicative identity such that:

1. $a \cdot 1=a$
2. $1 \cdot a=a$

The Identity Properties:
There is a unique number $-a$, called the additive inverse or negative of a such that:

1. $a+(-4)=a-a=0$
2. $(-a)+4=-a+a=0$

If $a \neq 0$, there is a unique number $\frac{1}{a}$, called the multiplicative inverse or reciprocal of a such that:
1.4. $\left(\frac{1}{4}\right)=\frac{4}{4}=1$
2. $\left(\frac{1}{a}\right) \cdot a=\frac{a}{a}=1$

The Closure Property:
$1 \cdot a+b$ IS A REAL NUMBER
(2. $a \cdot b$ IS A REAL NUMBER

WHEN YOU ADD AND MULTIPLY REAL NUMBERS, THE RESULT IS a real number

The Commutative Properties:

1. $a+b=b+4$ "ORDER DOES NOT MATTER"
2. $a \cdot b=b \cdot a$

The Associative Properties:

1. $a+(b+c)=(a+b)+c$
2. $a \cdot(b \cdot c)=(a \cdot b) \cdot c$

The Distributive Property:

1. $a(b+c)=a \cdot b+a \cdot c$
2. $(a+b) c=a \cdot c+b \cdot c$

Definition

Operations in mathematics must be performed in a systematic order, which can be remembered by the acronym PEMDAS:

Note 2. In other words, to simplify mathematical expressions, we will:

1. Simplify any expressions within grouping symbols, such as () and []
2. Simplify any expressions containing EXPONENTS \qquad or RADICALS \qquad
3. PerformMULTIPLICATION and division IN THE ORDER IN WHICH THEY APPEAR from left to right
4. Perform addition and SUBTRACTION_ IN THE ORDER IN WHICH THEY APPEAR from left to right

Example 6. Use the order of operations (PEMDAS) to simplify the following expressions:

$$
\text { 1.12-10\% } \begin{aligned}
(2 * 5) & =12-10 \div 10 \\
& =12-1 \\
& =11
\end{aligned}
$$

$$
\begin{aligned}
& 2.7+10^{2} \div \underbrace{(2 * 5)}+12=7+\underbrace{10} \div 10+12 \\
&=7+\underbrace{100 \div 10}+12 \\
&=7+10+12 \\
&=17+12=29 \\
& 3 \cdot 3(2)^{2}-\underbrace{4(6+2)}=3 \cdot \underbrace{2}-4 \cdot 8 \\
&=\underbrace{3 \cdot 4}-4 \cdot 8) 3 \cdot 4=12 \\
&=12-\underbrace{2}=4 \cdot 8 \\
& 4 \cdot 8=32 \\
&=12-32 \\
&=-20
\end{aligned}
$$

1.4 Operate on Complex Numbers

Note 3. $\sqrt{-a}=\sqrt{-1 \cdot a}=\sqrt{-1} \cdot \sqrt{a}=i \sqrt{a}$

Adding and Subtracting Complex Numbers
Adding Complex Numbers:

$$
(a+b i)+(c+d i)=(a+c)+(b+d))_{i}
$$

Subtracting Complex Numbers:

$$
(a+b i)-(c+d i)=(a-c)+(b-d) i
$$

Multiplying Complex Numbers
Multiplying Complex Numbers by Real Numbers:

$$
\underbrace{k(a+b i)=\mathbf{K} \boldsymbol{a}}+\mathbf{K b}_{i}
$$

Multiplying Complex Numbers by Complex Numbers: FOIL!
"FIRST, OUTER, INNER, LAST"
$(a+b i) \cdot(c+d i)=a c+a d i+b c i+b d i^{2}$
$=a c+(a d+b c) i+b d(-1)$
$=(a c-b d)+(a d+b c) i$

Example 7. Multiply:

$$
\begin{aligned}
& =3+(-3 \cdot \overbrace{(-4 i)(2+3 i)} \\
& =6+2+3 i+(-4 i) \cdot 2+(-4 i) \cdot(3 i) \\
& =6+(9-8) i-12(-1) \\
& =6+i+12=18+i
\end{aligned}
$$

Example 8. Multiply:

$$
\begin{aligned}
& =2 \cdot 4+2(-i)+3 i \cdot 4+(3 i) \cdot(-i) \\
& =8-2 i+12 i-3 i^{2} \\
& =8+(-2+12) i-3(-1) \\
& =8+10 i+3=11+10 i
\end{aligned}
$$

Definition
The complex conjugate of a complex number, $(a+b i)$ is $a-b i$. In other words, the complex conjugate of a complex number is found by changing the sign of the imaginary part of the complex number.

Note 4. The product of $a+b i$ with its complex conjugate, $a-b i$ is $(a+b i)(a-b i)=a^{2}+b^{2}$.

$$
\begin{aligned}
(a+b i)(a-b i) & =a \cdot a+a(-b i)+a(b i)+(b i)(-b i) \\
& =a^{2}-a b i+a b i-b^{2} i^{2} \\
& =a^{2}-b^{2}(-1)=a^{2}+b^{2}
\end{aligned}
$$

EXAMPLES:

1. COMPLEX CONJUGATE OF $1+3 i$ is $1-3 i$
2. COMPLEX CONJUGATE OF $-2 i$ is $-(-2 i)=2 i$

Dividing Complex Numbers
To divide $a+b i$ by $c+d i$, where c and d are both nonzero, multiply the fraction by the complex conjugate of $c+d i$:

$$
\begin{aligned}
\left(\frac{a+b i}{c+d i}\right)\left(\frac{c-d i}{c-d i}\right)=\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)} & =\frac{a c-a d i+b c i-b d i^{2}}{c^{2}+d^{2}} \\
& =\frac{a c+(-a d+b c) i-b d(-1)}{c^{2}+d^{2}} \\
& =\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}}
\end{aligned}
$$

Example 9. Divide : $\frac{2+5 i}{4-i}$

* COMPLEX CONJUGATE OF 4-i IS 4+i:

$$
\begin{aligned}
\left(\frac{2+5 i}{4-i}\right)\left(\frac{4+i}{4+i}\right) & =\frac{(2+5 i)(4+i)}{(4-i)(4+i)} \\
& =\frac{2 \cdot 4+2 \cdot i+5 i \cdot 4+5 i \cdot i}{4^{2}+1^{2}} \\
& =\frac{8+2 i+20 i+5 i^{2}}{16+1} \\
& =\frac{8+(2+20 i)+5(-1)}{17} \\
& =\frac{8+22 i-5}{17}=\frac{3+22 i}{17}=\frac{3}{17}+\frac{22 i}{17}
\end{aligned}
$$

