Module 10L Lecture Notes

MAC1105

Summer B 2019

10 Synthetic Division

10.1 Divide With Synthetic Division

The Division Algorithm

The Division Algorithm states that, given a polynomial dividend, f(x), and a nonzero polynomial divisor, d(x), where the degree of d(x) is less than or equal to the degree of f(x), there exist unique polynomials q(x) and r(x) such that

f(x) = q(x)d(x) + L(x)

$q(x)$ is the _OUOT	TENT and $r(x)$	is the PE	MAINDER	The remainder
is either 0 or has deg	gree strictly less than $_$	d(x)	$_$ If $r(x)$	= 0, then $d(x)$
DIVIDES	EVENLY	into $f(x)$.	This means that $d($	x) and $q(x)$ are
Factors	- of $f(x)$.			

How to use Long Division to Divide a Polynomial by a Binomial

1. Set up the division problem.

2. Determine the first term of the quotient by dividing the leading term of the

DIVIDEND by the leading term of the **DIVISOR**.

- 4. Subtract the bottom **BIJOMIAL** from the top binomial.
- 5. Bring down the next term of the dividend.
- 6. Repeat steps 2-5 until you reach the last term of the dividend.
- 7. If the remainder is non-zero, express the answer using the divisor as the

DENOMINATOR

Example 1. Use long division to divide $4x^3 + 12x^2 - 24x - 28$ by x + 4

$$\begin{array}{r}
\frac{4x^{2} - 4x - 8}{4x^{3} + 12x^{2} - 24x - 28} \\
-\frac{(4x^{3} + 16x^{2})}{-4x^{2} - 24x - 28} \\
\frac{-(-4x^{2} - 24x - 28)}{-(-4x^{2} - 16x)} \\
\frac{-(-8x - 28)}{-(-8x - 32)} \\
\end{array}$$

2

. .

$$\frac{4x^{2} + 12x^{2} - 24x - 28}{x + 4} = 4x^{2} - 4x - 8 + \frac{4}{x + 4}$$

Definition SYNTHETIC DIVISION is a shortcut that can be used when the divisor is a binomial in the form x - k, where k is a real number. In synthetic division, only the **COEFFICIENTS** are used in the division process.

Use synthetic Division to Divide Two Polynomials

- 1. Write k for the **DIVISOR**
- 2. Write the coefficients of the dividend.
- 3. Bring down the LEADING COEFFICIENT.
- 4. Multiply the leading coefficient by k. Write the product in the next column.
- 5. Add the terms of the second column.
- 6. Multiply the result by k. Write the product in the next column.
- 7. Repeat steps 5 and 6 for the remaining columns.
- 8. Use the bottom numbers to write the quotient. The number in the last column is the **REMAINDER** and it has degree 0, the next number from the right has degree 1, the next number from the right has degree 2, etc.

Example 2. Use synthetic division to divide $6x^3 - 18x^2 + 19$ by x - 2.

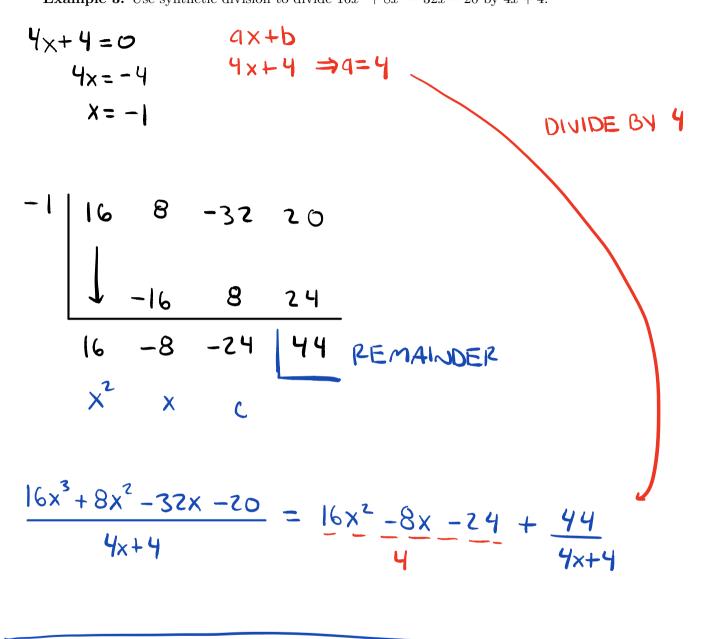
$$2 \begin{vmatrix} 6 & -18 & 0 & 19 \\ 12 & -12 & -24 \\ 6 & -6 & -12 \begin{vmatrix} -5 \\ -5 \end{vmatrix} REMAINDER x^{2} x c \frac{6x^{3} - 18x^{2} + 19}{x - 2} = 6x^{2} - 6x - 12 + (\frac{-5}{x - 2})$$

A IF WE MULT IP IN BOTH SIDES BY THE LCD, X-2, WE OBTAIN:

$$\left[\frac{6x^{3}-18x^{2}+19}{x-2} = 6x^{2}-6x-12 + \left(\frac{-5}{x-2}\right)\right](x-2)$$

$$6x^{5} - 18x^{2} + 19 = (6x^{2} - 6x - 12)(x - 2) - 5$$

Example 3. Use synthetic division to divide $16x^3 + 8x^2 - 32x - 20$ by 4x + 4.



$$\frac{|6x^{3}+8x^{2}-32x-20}{4x+4} = 4x^{2}-2x-6 + \frac{44}{4x+4}$$

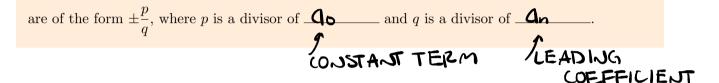
 $\Rightarrow 16x^3 + 8x^2 - 32x - 20 = (4x^2 - 2x - 6)(4x + 4) + 44$

10.2 Possible Rational Roots

Rational Root Theorem

The possible rational roots of the polynomial

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$



How to Use the Rational Root Theorem to Find the Zeros of a Polynomial f(x)

- 1. Determine all divisors of the constant term a_0 and all divisors of the leading coefficient a_n .
- 2. Use 1 to determine all possible values of $\pm \frac{p}{q}$, where p is a divisor of **_____** and q is a divisor of **_____**.
- 3. Determine which possible zeros are actually zeros of f(x) by evaluating each case of $f\left(\pm \frac{p}{q}\right)$.

Example 4. Find the possible rational roots of the following polynomial:

$$f(x) = 6x^3 - 17x^2 + 6x + 8$$

· 90= 8 DIVISORS OF 8: 1,2,4,8

• 9n = 6 DIVISORS OF 6: 1,2,3,6

⇒ POSSIBLE PATIONAL POOTS: $\frac{\pm 1}{1}, \frac{\pm 2}{2}, \frac{\pm 3}{2}, \frac{\pm 3}{2}, \frac{\pm 3}{6}$ $\frac{\pm 2}{1}, \frac{\pm 2}{2}, \frac{\pm 3}{2}, \frac{\pm 3}{6}$ $\frac{\pm 4}{1}, \frac{\pm 4}{2}, \frac{\pm 4}{3}, \frac{\pm 4}{6}$ $\frac{\pm 8}{1}, \frac{\pm 8}{2}, \frac{\pm 8}{3}, \frac{\pm 8}{6}$ **Example 5.** Find the possible rational roots of the following polynomial and then find the actual roots by factoring or using the Quadratic Formula:

$$f(x) = x^{2} - 15$$

$$f(x)$$

10.3 Completely Factor Polynomials

The Remainder Theorem

If a polynomial f(x) is divided by x - k then the value of $-\frac{f(k)}{k}$ is the remainder.

The Factor Theorem

k is a zero of f(x) if and only if (X - K) is a factor of f(x).

How to Find the Zeros of a Polynomial f(x) Using Synthetic Division

1. Use the **PATIONAL POST** THEOREM to find all

of the possible rational roots (zeros) of f(x).

- 2. Use synthetic division to evaluate a given possible zero. If the remainder is 0, the candidate is a zero. If the remainder is not 0, discard the candidate.
- 3. Repeat step 2 using the quotient found with synthetic division. Continue (if possible) until the quotient is a quadratic.
- 4. Find the zeros of the quadratic.

Example 6. Factor the polynomial below and list all of the actual zeros for the polynomial:

$$f(x) = x^{3} - 6x^{2} - 15x + 100$$

$$\cdot d_{0} = 100 \quad \text{Divisors of 100:} 1, 2, 4, 5, 10, 20, 25, 50, 100$$

$$\cdot d_{n} = 1 \quad \text{Divisors of 1:} 1$$

$$\Rightarrow \text{Possible Pational Poors:} \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20, \pm 25, \pm 50, \pm 100$$

$$TPY 1: \quad TPY -1:$$

$$1 \quad \begin{vmatrix} 1 & -6 & -15 & 100 \\ \hline 1 & -5 & -20 \\ \hline 1 & -5 & -20 \\ \hline 1 & -5 & -20 \\ \hline 1 & -5 & -10 \\ \hline -1 & -5 & 100 \\ \hline 1 & -6 & -15 & 100 \\ \hline 1 & -6 & -15 & 100 \\ \hline 1 & -6 & -15 & 100 \\ \hline 1 & -6 & -15 & 100 \\ \hline 1 & -6 & -15 & 100 \\ \hline 1 & -6 & -15 & 100 \\ \hline 1 & -10 & 25 & 0 \\ X^{2} \quad X \quad C \quad y$$

$$\text{Yes!}$$

Example 7. Factor the polynomial below and list all of the actual zeros for the polynomial:

$$f(x) = x^{4} + 12x^{3} + 37x^{2} - 30x - 200$$

$$\cdot q_{0} = -200 \quad D_{VIISORS OF ZOO}: 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200$$

$$\cdot q_{1} = 1 \quad D_{VIISORO OF} /:$$

$$\Rightarrow POSS IBLE fATIONIAL ZEROS:$$

$$\pm 1, \pm 1, \pm 5, \pm 8, \pm 10, \pm 20, \pm 25, \pm 40, \pm 50, \pm 100, \pm 200$$

$$TRY 2:$$

$$2 \begin{bmatrix} 1 & 12 & 37 & -50 & -200 \\ 1 & 2 & 28 & 130 & 200 \\ 1 & 14 & 65 & 100 & 10 \\ x^{3} & x^{4} & x & c & YES! \end{bmatrix}$$

$$\Rightarrow x^{4} + 12x^{5} + 37x^{2} - 30x - 200 = (x - 2)(x^{3} + 14x^{7} + 65x + 100) \\ d_{0} = 100 \quad D_{VIISORS OF} 100: 1, 2, 4, 5, 10, 20, 25, 50, 100 \end{bmatrix} FACTOR!$$

⇒ POSSIBLE RATIONAL POOTS: ±1, ±2, ±4, ±5, ±10, ±20, ±25, ±50, ±100 TRN-4:

•

$$-4 \begin{bmatrix} 1 & 14 & 65 & 100 \\ y & -4 & -40 & -100 \end{bmatrix} \Rightarrow x^{3} + 14x^{2} + 65x + 100 = (x+4)(x^{2} + 10x + 25) \\ = (x+4)(x+5)^{2} \\ \Rightarrow x^{4} + 12x^{3} + 37x^{2} - 30x - 200 = (x-2)(x^{3} + 14x^{2} + 65x + 100) \\ = (x-2)(x+4)(x+5)^{2}$$

Example 8. Factor the polynomial below and list all of the actual zeros for the polynomial:

$$f(x) = 3x^{3} + 7x^{2} - 11x - 15$$

$$\cdot d_{0} = -15 \quad D(y_{1}|_{SO}|_{2} SOF |_{5}: |_{1}, 3, 5, |_{5} S)$$

$$= POSS IBLE (PATIONAL ZEROS: \pm 1, \pm \frac{1}{3}, \pm 3, \pm 5, \pm \frac{5}{3}, \pm 15)$$

$$= TRY - I:$$

$$-1 \quad |_{3} = 7 \quad -11 \quad -15$$

$$= \frac{1}{3} \quad -3 \quad -4 \quad 15$$

$$= \frac{1}{3} \quad -3 \quad -4 \quad 15$$

$$= \frac{1}{3} \quad -15 \quad |_{0} \quad YES!$$

$$= 3x^{3} + 7x^{2} - 11x - 15 = (x + 1)(3x^{2} + 4x - 15)$$

$$= FACTOR \quad 3x^{2} + 4x - 15 : FACTORS OF (-15)(3) = -45 \text{ THAT ADD TO } 4: 9, -5$$

$$= 3x^{2} + 4x - 15 = 3x^{2} + 4x + 15$$

$$Sx^{2} + 9x^{2} - 15 = 3x^{2} + 9x^{2} - 5x - 15$$
$$= 3x(x+3) - 5(x+3)$$
$$= (x+3)(3x-5)$$

$$\Rightarrow 3x^3 + 7x^2 - 11x - 15 = (x+1)(x+3)(3x-5)$$

Example 9. Factor the polynomial below and list all of the actual zeros for the polynomial:

$$f(x) = 18x^{3} - 9x^{2} - 38x + 24$$

$$(q_{n} = 18 \ Divisors \ OF \ 24 : 1, 2, 3, 4, 6, 8, 12, 24$$

$$(q_{n} = 18 \ Divisors \ OF \ 24 : 1, 2, 3, 4, 6, 8, 12, 24$$

$$(q_{n} = 18 \ Divisors \ OF \ 18 : 1, 2, 3, 6, 9, 18$$

$$\Rightarrow Poss IBLE \ FATIO \ AL \ ZEROS:$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{7} \cdot \frac{1}{9} \cdot \frac{1}{78} \cdot \frac{1}{78$$