Module 5 Lecture Notes

MAC1105

Summer B 2019

5 Radica	l Functions
----------	-------------

Example 1. Consider the following examples:

5.1 Domain

Definition		
A is a correspondence between two sets A and B . A relation is expressed		
as a pair of ordered pairs (x, y) , where x is an element of set A and y is an element of set B.		
Definition		
A from a set A into a set B is a relation that assigns to each element x in		
set A element y in the set B .		
Note 1. The of a relation is the set of all first elements and the		
is the set of all second elements in the ordered pairs.		

Definition

The ______ of a function y = f(x) is the set of all real numbers x for which the expression is defined.

The Standard Form of a Radical Function

The standard form of a radical function is given by $f(x) = \underline{\hspace{1cm}}$.

Note 2. For now, we will write the standard form of a radical function as $f(x) = a\sqrt{x-h} + k$. Observe that when we set bx - c = 0 and solve for x we get :

The Standard Form of a Radical Function

Standard Form: The standard form of a radical function is given by $f(x) = \frac{1}{2} \int_{0}^{x} f(x) dx$

Vertex: The vertex of a radical function is ______.

Note 3. In our formula, a tells us how wide our graph will be. It is the "stretch factor" of the graph. n tells us what root we are taking.

Question 1: Can we take the square root of a negative number?

Question 2: Can we take the cube root of a negative number?

Question 3: Can we take the even root of a	a negative number?
Question 4: Can we take the odd root of a	negative number?
Note 4. From question 2 and 4, we can see t	that the domain of a radical function with an odd root
(when n is odd) is	From question 2 and 3, we can see that there are two
possibilities for the domain of an even root function:	

Example 2. Write the domain of the function in interval notation:

$$\sqrt{x-2}$$

Example 3. Write the domain of the function in interval notation:

$$\sqrt[3]{-8x+6}$$

Example 4. Write the domain of the function in interval notation:

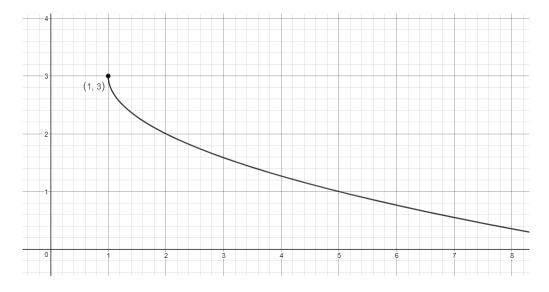
$$\sqrt[8]{5x+5}$$

5.2 Graphing Radical Functions

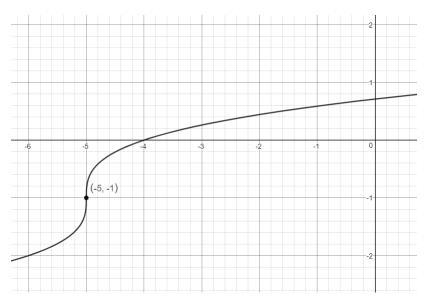
The graph for \sqrt{x} looks like:
The graph for $-\sqrt{x}$ looks like:
Note 5. Observe that the graph of $-\sqrt{x}$ is the reflection about the of the graph of \sqrt{x} .
Reflections Across an Axis The graph $y=-f(x)$ is the reflection about the of the graph of
The graph $y = -f(x)$ is the reflection about the or $y = f(x)$. The graph of $y = f(-x)$ is the reflection about the or the graph of $y = f(x)$.

Note 6. In fact, this is what the graph for any even root function looks like.

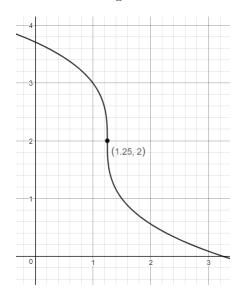
The graph for $\sqrt[3]{x}$ looks like:


The graph for $-\sqrt[3]{x}$ looks like:

Note 7. In fact, this is what the graph for any odd root function looks like.


Finding the Equation of a Radical Function Given its Graph

- 1. Determine whether the root of the function is odd or even.
- 2. Determine whether a is greater than 0 or less than 0.
- 3. Find the coordinates for the vertex of the function.
- 4. Remove any decimals under the radical sign by setting the expression under the radical equal to 0.


Example 5. Write the equation of the following function:

Example 6. Write the equation of the following function:

Example 7. Write the equation of the following function:

5.3 Solving Radical Equations (Linear)

Rational Exponents

A rational exponent indicates a power in the numerator and a root in the denominator. We can write rational exponents in many different ways:

$$(a)^{m/n} = (a^{1/n})^m = \underline{\qquad} = \sqrt[n]{a^m} = \underline{\qquad}$$

Example 8. We can write $2^{1/2}$ and $4^{2/3}$ as follows:

Example 9. Evaluate $8^{2/3}$

Example 10. Evaluate $64^{-1/3}$

Definition

A radical equation is an equation that contains variables in the ______ (expression under the radical).

Note 8. When solving radical equations, we need to be careful of finding solutions that are not actually real solutions to our function.

Definition An _____ is a root of an equation that is not actually a real solution to the equation.

Note 9. We can "get rid of" a radical as follows:

How to Solve a Radical Equation

- 1. Isolate the radical expression on one side of the equation. Put all remaining terms on the other side.
- 2. For a square root radical, raise both sides to the 2nd power. Doing so eliminates the radical.
- 3. Solve the remaining equation.
- 4. If there is still a radical symbol, repeat steps 1-2.
- 5. CHECK YOUR SOLUTIONS by substituting into the original equation.

Note 10. If we have an *n*th root radical, raise both sides to the *n*th power in step 2 above.

Example 11. Solve the following equation:

$$\sqrt{3x-3} = \sqrt{7x-2}$$

Example 12. Solve the following equation:

$$\sqrt{3x+8} = \sqrt{7x-2}$$

5.4 Solving Radical Equations (Quadratic)

Note 11. Note that solving radical equations that lead to quadratic equations will have 0, 1, or 2 solutions. Follow the same steps as solving radical equations that lead to linear equations.

Example 13. Solve the following equation:

$$\sqrt{20x^2 + 15} - \sqrt{37x} = 0$$

Example 14. Solve the following equation:

$$\sqrt{-30x^2 - 25} - \sqrt{-55x} = 0$$