Module 6 Lecture Notes

MAC1105

Fall 2019

6 Polynomial Functions

6.1 End and Zero Behavior

Note 1. A polynomial of degree 2 or more has a graph with no sharp turns or cusps.

Note 2. The domain of a polynomial function is \qquad

Definition

The values of x for which $f(x)=0$ are called the \qquad or x-intercepts of f.

Note 3. If a polynomial can be factored, we can set each factor equal to zero to find the x-intercepts (or zeros) of the function. Recall that the x-intercepts of a function are where $f(x)=0$, or $y=0$. The y-intercepts are where $x=0$.

How to Find the x-Intercepts of a Polynomial Function, f, by Factoring

1. Set \qquad
2. If the polynomial function is not in factored form, then factor the polynomial.
3. Set each factor equal to \qquad to find the x-intercepts.

Example 1. Find the x and y-intercepts of:

$$
g(x)=(x-2)^{2}(2 x+3)
$$

Note 4. The graphs of polynomials behave differently at various x-intercepts. Sometimes, a graph will \qquad the horizontal x-axis at the x-intercepts, and other times the graph will \qquad or bounce off the horizontal x-axis at the x-intercepts.

Definition

The number of times a given factor appears in the factored form of a polynomial is called the

Example 2. From the above example, $g(x)=(x-2)^{2}(2 x+3)$, the factor associated to the zero at $x=2$ has multiplicity __. This zero has even multiplicity. The factor associated to the zero at $x=-\frac{3}{2}$ has multiplicity \quad. This zero has odd multiplicity.

Graphical Behavior of Polynomials at x-Intercepts (Zeros)

If a polynomial contains a factor in the form $(x-h)^{p}$, the behavior near the x-intercept h is determined by the power p. We say that $x=h$ is a zero of \qquad p. The graph of a polynomial function will touch the x-axis at zeros with \qquad multiplicities. The graph of a polynomial function will cross the x-axis at zeros with \qquad multiplicities. The sum of the multiplicities is the \qquad of the polynomial function.

Example 3. The graphs below exemplify the behavior of polynomials at their zeros with different multiplicities:

Note 5. The graph of a polynomial function of the form

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

will either \qquad or \qquad as x increases without bound and will either \qquad or
\qquad as x decreases without bound. This is called the
of a function.

Example 4. The chart below illustrates the end behavior of a polynomial function:

Even Degree	Odd Degree
Positive Leading Coefficient $a_{n}>0$ End Behavior: $\begin{gathered} x \rightarrow \infty, f(x) \rightarrow \infty \\ x \rightarrow-\infty, f(x) \rightarrow \infty \end{gathered}$	Positive Leading Coefficient $a_{n}>0$ End Behavior: $\begin{aligned} x & \rightarrow \infty, f(x) \end{aligned} \rightarrow \infty$
Negative Leading Coefficient $a_{n}<0$ End Behavior: $\begin{gathered} x \rightarrow \infty, f(x) \rightarrow-\infty \\ x \rightarrow-\infty, f(x) \rightarrow-\infty \end{gathered}$	Negative Leading Coefficient $a_{n}<0$ End Behavior: $\begin{aligned} & x \rightarrow \infty, f(x) \rightarrow-\infty \\ & x \rightarrow-\infty, f(x) \rightarrow \infty \end{aligned}$

Example 5. Choose the end behavior of the polynomial function:

$$
f(x)=-(x+7)^{6}(x+5)^{4}(x-5)^{3}(x-7)^{3}
$$

Choice A Choice C

Example 6. Choose the option below that describes the behavior at $x=-3$ of the polynomial:

$$
f(x)=(x+6)(x+3)^{4}(x-3)^{3}(x-6)
$$

Example 7. Choose the option below that describes the behavior at $x=-9$ of the polynomial:

$$
f(x)=(x+9)^{3}(x+3)^{5}(x-3)^{3}(x-9)^{2}
$$

Example 8. Choose the end behavior of the polynomial function:

$$
f(x)=(x+9)(x+4)^{6}(x-4)^{3}(x-9)
$$

Choice A Choice C

6.2 Graphing Polynomials

Definition

A \qquad of the graph of a polynomial function is the point where a function changes from rising to falling or from falling to rising. A polynomial of degree n will have at most \qquad turning points.

How to Determine the Zeros and Multiplicities of a Polynomial of Degree n Given its Graph

1. If the graph crosses the x-axis at the intercept, it is a zero with \qquad
\qquad
2. If the graph touches the x-axis and bounces off the axis, it is a zero with
\qquad
3. The sum of the multiplicities is \qquad .

Definition

If a polynomial of lowest degree p has x-intercepts at $x=x_{1}, x_{2}, \ldots, x_{n}$, then the polynomial can be written in factored form:

Note 6. In the factored form of a polynomial, the powers on each factor can be determined by the behavior of the graph at the corresponding \qquad and the stretch factor a can be determined given a value of the function other than the \qquad
\qquad

How to Determine a Polynomial Function Given its Graph

1. Identify the \qquad - \qquad to determine the factors of the polynomial.
2. Examine the behavior of the graph at x-intercepts to determine the \qquad of each factor.
3. Find the polynomial of least degree containing all the factors found in step 2.
4. Use any other point on the graph (typically the y-intercept) to determine the stretch factor (or, you can analyze the end behavior of the graph to determine the stretch factor).

Example 9. Write an equation of the function graphed below:

Example 10. Write an equation of the function graphed below:

How to Sketch the Graph of a Polynomial Function

1. Find the x-intercepts (zeros).
2. Find the y-intercepts.
3. Check for symmetry. If the function is an even function, then its graph is symmetric about the \qquad - \qquad (that is, $f(-x)=f(x)$). If the function is an odd function, then its graph is symmetric about the \qquad - \qquad (that is, $f(-x)=-f(x))$.
4. Determine the behavior of the polynomial at the zeros using their \qquad
5. Determine the \qquad .
6. Sketch a graph.
7. Check that the number of \qquad does not exceed one less than the degree of the polynomial.

6.3 Lowest Degree Polynomial

The Factor Theorem
k is a zero of $f(x)$ if and only if \qquad is a factor of $f(x)$.

Note 7. The following statements are equivalent:

Note 8. If we are given the zeros of a polynomial, we can use the to construct the lowest-degree polynomial.

Example 11. Construct the lowest-degree polynomial given the zeros below:

$$
3,-3,-4
$$

Example 12. Construct the lowest-degree polynomial given the zeros below:

$$
-\frac{4}{3},-\frac{3}{2},-3
$$

Fundamental Theorem of Algebra

If $f(x)$ is a polynomial of degree $n>0$, then $f(x)$ has at least one \qquad
—. In fact, if $f(x)$ is a polynomial of degree $n>0$ and a is a nonzero real number, then $f(x)$ has exactly n \qquad :
where $c_{1}, c_{2}, \ldots, c_{n}$ are complex numbers. That is, $f(x)$ has \qquad if we allow for multiplicities.

Note 9. This does NOT mean that every polynomial has an imaginary zero. Real numbers are a subset of the complex numbers, but complex numbers are not a subset of the real numbers.

The Linear Factorization Theorem

If f is a polynomial function of degree n, then f has n \qquad , and each factor is of the form \qquad where c is a complex number. That is, a polynomial function has the same number of linear factors as its degree.

Complex Conjugate Theorem

Suppose f is a polynomial function with real coefficients. If f has a complex zero of the form $a+b i$, then the \qquad of the zero, $a-b i$, is also a zero.

A Closer Look at the Zeros of a Polynomial Function

Recall the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Case 1: $b^{2}-4 a c$ is positive and not a perfect square:

$$
\begin{gathered}
x=\square \\
x=\square \\
\end{gathered}
$$

Case 2: $b^{2}-4 a c$ is negative:

$$
\begin{gathered}
x=\square \\
x=\square \\
\end{gathered}
$$

Example 13. Construct the lowest-degree polynomial given the zeros below:

$$
\sqrt{2}, \frac{1}{3}
$$

Example 14. Construct the lowest-degree polynomial given the zeros below:

$$
4+3 i,-\frac{2}{5}
$$

