Module 8 Lecture Notes

MAC1105

Fall 2019

8 Logarithmic and Exponential Functions

8.1 Domain and Range

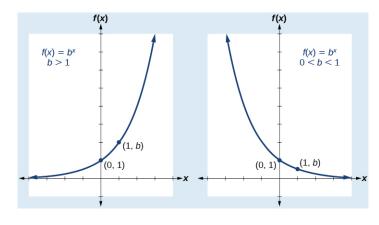
Exponential Functions

Exponential functions have the form ______ for any real number x and constant $b > 0, b \neq 1$.

Graph of Exponential Function: The graph of the parent function, $f(x) = b^x$ is shown below.

We call the two cases exponential ______ and exponential

____:



Characteristics of the Graph of b^x

An exponential function of the form $f(x) = b^x$, b > 0, $b \ne 1$ has the following characteristics:

- Horizontal Asymptote at _____
- Domain: _____
- Range: _____
- Vertical Asymptote: _____
- *x*-intercept: _____
- *y*-intercept: _____
- Increasing if _____
- Decreasing if _____

Shifts of the Parent Function, $f(x) = b^x$	
For any constants c and d , the function $b^{x+c} + c$	d shifts the graph of the parent function $f(x) = b^x$:
• Vertically units, in the	direction as the sign of
• Horizontally units, in the	direction as the sign of
• The <i>y</i> -intercept becomes	_
• The horizontal asymptote becomes	
• The range becomes	<u> </u>
• The domain is (in	t remains)

Example 1. Determine the domain AND range of the exponential function:

$$f(x) = -8^{x-4} + 6$$

Example 2. Determine the domain AND range of the exponential function:

$$f(x) = -8^{x-10} + 4$$

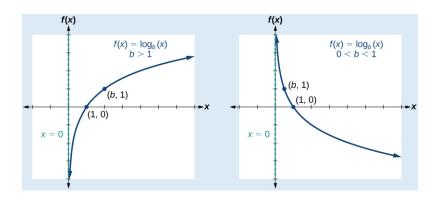
Logarithmic Functions

Logarithmic functions have the form ______ for any real number x>0 and constant $b>0, b\neq 1$. We read _____ as "the logarithm with base b of x".

Note 1. We have that $y = \log_b x$ is equivalent to $x = b^y$. So, the logarithmic function $y = \log_b x$ is the _____ of the exponential function $y = b^x$.

Graph of Logarithm Function: The graph of the parent function, $f(x) = \log_b(x)$ is shown

below:



Characteristics of the Graph of $\log_b(x)$

For any real number x and constant b > 0, $b \neq 1$, we can see the following characteristics in the graph of $f(x) = \log_b(x)$:

- Vertical Asymptote at _____
- Domain: _____
- Range: _____
- *x*-intercept: _____
- Key point: _____
- *y*-intercept: _____
- Increasing if _____
- Decreasing if _____

Note 2. For any constant,	c , the function $f(x) = \log_b(x + c)$ shifts the graph of $\log_b(x)$ by
units to the	if $c > 0$ and by units to the
if $c < 0$. When we shift	the graph of $\log_b(x)$ to the right and left, we must also shift the
of	the function.
How to Determine the	Domain of Logarithm Functions
Recall that the domain of t	he parent function, $\log_b(x)$ is Since the graph
of $\log_b(x+c)$ shifts the gra	aph of $\log_b(x)$ to the right and left, we must also shift the domain (and
vertical asymptote). The fu	anction $\log_b(x+c)$ has a vertical asymptote at,
so the domain of $\log_b(x + \epsilon)$	c) is
Note 3. Another way to con	nsider finding the domain of $\log_b{(x+c)}$ is to solve
Definition	
A	is a logarithm with base 10. We write $\log_{10}(x)$
as The	common logarithm of a positive number x satisfies the following defini-
tion:	
For $x >$	> 0,
Note 4. Since the graph of	a logarithmic function $\log_b(x+c) + d$ does note have any
asymptotes, the range is	(it remains).

$$f(x) = \log(x - 5) + 7$$

Example 4. Determine the domain AND range of the logarithmic function:

$$f(x) = -\log(x - 9) + 10$$

Note 5. The domain of logarithmic functions tells us that we cannot take the logarithm of a ______ number. We also cannot take the logarithm of _____.

8.2 Convert Between Forms

Relationship Between Logarithmic Functions and its Corresponding Exponential Form

We can express the relationship between logarithmic functions and its corresponding exponential form as follows:

How to Convert From Logarithmic Form to Exponential Form

- 1. Examine the equation $y = \log_b(x)$ and identify _____, and _____.
- 2. Rewrite $y = \log_b(x)$ as _____.

Note 6. To convert from exponential form to logarithmic form, follow the same steps above in reverse.

Example 5. Convert the function below from logarithmic form to exponential form:

$$y = \log_7(9)$$

Example 6. Convert the function below from logarithmic form to exponential form:

$$y = \log_{10}(x - 6) + 1$$

Example 7. Convert the function below from exponential form to logarithmic form:

$$y = 10^{x-4} + 1$$

Note 7. Changing between forms is most helpful when trying to solve logarithmic equations.

Example 8. Solve the logarithmic equation below:

$$\log_4\left(4x\right) = 9$$

Example 9. Solve the logarithmic equation below:

$$\log_3(4x - 6) + 8 = -\frac{2}{3}$$

Example 10. Solve $y = \log_4{(64)}$ without using a calculator.

Note 8. Recall that $\pi \approx 3.14$. Similarly, we can define a new irrational number, $e \approx 2.718281828...$

Definition The function given by $f(x) = e^x$ is called the ______ with natural base e.

Definition

A ______ is a logarithm with base e. We write $\log_e{(x)}$ as

______. The natural logarithm of a positive number x satisfies the following definition: For x>0, ______. Since the functions $y=e^x$ and $y=\ln(x)$ are inverse functions, $\ln(e^x)=$ ______ for all x, and $e^{\ln(x)}=$ ______ for all x>0.

8.3 Properties of Logs

Basic Logarithm Properties

Two basic properties of logarithms are as follows:

$$\log_b(1) = \underline{\hspace{1cm}}$$

$$\log_b(b) = \underline{\hspace{1cm}}$$

One-to-One Property

The one-to-one property for logarithms states that $\log_b M = \log_b N$ if and only if

The Product Rule for Logarithms

The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of individual logarithms:

Example 11. Expand $\log_2 xy$

Example 12. Expand $\log_3 (30x(3x+4))$

The Quotient Rule for Logarithms

The quotient rule for logarithms can be used to simplify a logarithm of a quotient by rewriting it as a difference of individual logarithms:

Example 13. Expand $\log_2\left(\frac{x}{y}\right)$

Example 14. Expand
$$\log_3 \left(\frac{7x^2 + 21x}{7x(x-1)(x-2)} \right)$$

The Power Rule for Logarithms

The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as a product of the exponent times the logarithm of a base:

Example 15. Expand $\log_2 x^5$

Example 16. Use properties of logarithms to simplify the expression below:

$$\log\left(\frac{\sqrt{8x^7y^3}}{z^4}\right)$$

Example 17. Use properties of logarithms to simplify the expression below:

$$\log\left(\frac{\sqrt{4x^4y^5}}{z^5}\right)$$

Example 18. Use properties of logarithm functions to solve the logarithmic equation below:

$$6 = \ln\left(\sqrt{\frac{4}{e^x}}\right)$$

8.4 Solve Exponential Functions

One-to-One Property of Exponential Functions

For any algebraic expressions S and T, and any positive real number $b \neq 1$, $b^S = b^T$ if and only if

Using the One-to-One Property to Solve Exponential Equations

- 1. Rewrite each side of the equation as a power with a _____
- 2. Use the rules of exponents to simplify so that the resulting equation has the form

_____ = _____.

- 3. Use the One-to-One property to set the exponents equal.
- 4. Solve the resulting equation, S = T for the unknown.

Example 19. Solve the exponential equation below:

$$2^{-5x-6} = 2^{4x+4}$$

Example 20. Solve the exponential equation below:

$$4^{5x-3} = 2^{-4x+5}$$

Example 21. Solve the exponential equation below:

$$\left(\frac{1}{4}\right)^{4x-2} = 2^{-6x+6}$$

Note 9. Using the one-to-one property is very useful, but sometimes we will be given an equation in which the one-to-one property cannot be applied.

Solving Exponential Equations Using Logarithms

- 1. Take the logarithm of both sides of the equation.
- 2. If one of the terms in the equation has base 10, use the _____

____.

3. If neither of the terms in the equation has base 10, then use the _____

_____.

4. Use the properties of logarithms to solve for the unknowns.

Example 22. Solve the exponential equation below:

$$6^{-5x-6} = 5^{6x+4}$$

Example 23. Solve the exponential equation below:

$$27^{-6x-3} = \left(\frac{1}{16}\right)^{2x+3}$$