Module 8 Lecture Notes

MAC1105

Summer B 2019

8 Logarithmic and Exponential Functions

8.1 Domain and Range

Exponential Functions		
Exponential functions have the form _	P _x	for any real number x and constant
$b > 0, \ b \neq 1.$		

Graph of Exponential Function: The graph of the parent function, $f(x) = b^x$ is shown below.

We call the two cases exponential **GROWTH** and exponential

DECAY

Characteristics of the Graph of b^x

An exponential function of the form $f(x) = b^x$, b > 0, $b \neq 1$ has the following characteristics:

- Horizontal Asymptote at _______
- Domain: (-\infty, \infty)
- Range: (o, ∞)
- Vertical Asymptote: NONE
- *x*-intercept: **NONE**
- y-intercept: (O, I)
- Increasing if _____b > l

Shifts of the Parent Function, $f(x) = b^x$

For any constants c and d, the function $b^{x+c} + d$ shifts the graph of the parent function $f(x) = b^x$:

- \bullet Vertically $\underline{\textbf{d}}$ units, in the $\underline{\textbf{SAME}}$ direction as the sign of $\underline{\textbf{d}}$
- Horizontally <u>C</u> units, in the <u>OPPOSITE</u> direction as the sign of <u>C</u>
- The y-intercept becomes $(0, b^c + d)$
- The range becomes (d, co)
- The domain is (-0) (it remains UNCHANGED)

Example 1. Determine the domain AND range of the exponential function:

DOMAIN REMAINS UNCHANGED
$$\Rightarrow$$
 DOMAIN IS $(-\omega, \omega)$

PANGE OF $f(x) = b^{X+L} + d$ IS (d, ω)
 \Rightarrow PANGE IS $(6, \omega)$

TRECAUSE THE GRAPH IS SHIFTED UP 6 UNITS

Example 2. Determine the domain AND range of the exponential function:

DOMAIN REMAINS UNCHANGED
$$\Rightarrow$$
 DOMAIN IS $(-\omega, \omega)$

RANGE OF $f(x) = b^{X+C} + d$ IS (d, ω)
 \Rightarrow PANGE IS $(4, \omega)$

BECAUSE THE GRAPH IS SHIFTED UP 4 UNITS

Logarithmic Functions

Logarithmic functions have the form $y = \log_b(x)$ for any real number x > 0 and constant b > 0, $b \ne 1$. We read $\log_b(x)$ as "the logarithm with base b of x".

Note 1. We have that $y = \log_b x$ is equivalent to $x = b^y$. So, the logarithmic function $y = \log_b x$ is the **INVERSE** of the exponential function $y = b^x$.

Graph of Logarithm Function: The graph of the parent function, $f(x) = \log_b(x)$ is shown

below:

Characteristics of the Graph of $\log_b(x)$

For any real number x and constant b > 0, $b \neq 1$, we can see the following characteristics in the graph of $f(x) = \log_b(x)$:

- Vertical Asymptote at X=0
- Domain: (6, Φ) & (ANNOT TAKETHE LOGARITHM OF O OR A NEGATIVE!
- Range: (-0,0)
- *x*-intercept: (1,0)
- Key point: (b,1)
- y-intercept: _NONE
- Increasing if **b**>1
- Decreasing if O L b L l

Note 2. For any constant, c , the function $f(x) = \log_b(x+c)$ shifts the graph of $\log_b(x)$ by $\underline{\hspace{1cm}}$		
units to the $\frac{\mathbf{LEFT}}{\mathbf{LGHT}}$ if $c > 0$ and by $\frac{\mathbf{C}}{\mathbf{U}}$ units to the $\frac{\mathbf{LGHT}}{\mathbf{U}}$		
if $c < 0$. When we shift the graph of $\log_b(x)$ to the right and left, we must also shift the		
Domalo of the function.		
(ENERTICAL ASYMPTOTE)		
How to Determine the Domain of Logarithm Functions		
Recall that the domain of the parent function, $\log_b(x)$ is (b, c^b) . Since the graph		
of $\log_b(x+c)$ shifts the graph of $\log_b(x)$ to the right and left, we must also shift the domain (and		
vertical asymptote). The function $\log_b(x+c)$ has a vertical asymptote at $X = C$,		
so the domain of $\log_b(x+c)$ is $(-c, \infty)$.		
Note 3. Another way to consider finding the domain of $\log_b(x+c)$ is to solve $X+C > O$		
Definition		
A COMMON LOGARITHM is a logarithm with base 10. We write $\log_{10}{(x)}$		
as $\log(x)$. The common logarithm of a positive number x satisfies the following defini-		
tion:		
For $x > 0$, $y = log(x)$ is EQUIVALE UT TO $lo^{y} = x$		
Note 4. Since the graph of a logarithmic function $\log_b(x+c)+d$ does note have any HOLIZONTAL		
asymptotes, the range is (-%) (it remains \(\subseteq \text{LANGED}\)).		

Example 3. Determine the domain AND range of the logarithmic function:

$$f(x) = \log(x-5) + 7$$

& PANGE OF LOGARITHM FUNCTIONS IS UNCHANGED: RANGE IS $(-\infty, \infty)$

\$ DOMAIN:
$$x-5>0$$

 $x>5$ ⇒ DOMAIN IS $(5,\infty)$

Example 4. Determine the domain AND range of the logarithmic function:

$$f(x) = -\log(x - 9) + 10$$

$$X>9 \Rightarrow \boxed{DOMAIN 15 (9,00)}$$

Note 5. The domain of logarithmic functions tells us that we cannot take the logarithm of a _______ number. We also cannot take the logarithm of _______.

8.2 Convert Between Forms

Relationship Between Logarithmic Functions and its Corresponding Exponential Form

We can express the relationship between logarithmic functions and its corresponding exponential form as follows:

logb(x)=Y \ by by=x

How to Convert From Logarithmic Form to Exponential Form

- 1. Examine the equation $y = \log_b(x)$ and identify b, d, and d.
- 2. Rewrite $y = \log_b(x)$ as $\mathbf{b}^{\mathbf{\gamma}} = \mathbf{x}$

Note 6. To convert from exponential form to logarithmic form, follow the same steps above in reverse.

Example 5. Convert the function below from logarithmic form to exponential form:

$$y = \log_7(9)$$

$$7 + 0$$

$$7 + 9$$

$$7 + 9$$

$$7 + 9$$

below from logarithmic form to exponential form:

$$y = \log_{10}(x - 6) + 1$$

$$\frac{-1}{y - 1} = \log_{10}(x - 6)$$

$$y = \log_{10}(x - 6) + 1$$

$$\frac{-1}{y - 1} = \log_{10}(x - 6)$$

$$y = \log_{10}(x - 6) + 1$$

$$= \log_{10}(x - 6)$$

$$= \log_{1$$

Example 7. Convert the function below from exponential form to logarithmic form

$$y = 10^{x-4} + 1$$
 $-1 = -1$
 $y-1 = 10^{x-4}$

"10 TO THE X-4 EQUALS $y-1$ "

 $\log_{10}(y-1) = x-4$
 $\log_{10}(y-1) + 4 = x$

Note 7. Changing between forms is most helpful when trying to solve logarithmic equations.

Example 8. Solve the logarithmic equation below:

$$\log_{4}(4x) = 9$$
THE 9 EQUALS $4x^{4}$

$$\frac{262,144 = 4x}{4}$$

$$\frac{265,536 = x}{65,536 = x}$$

Example 9. Solve the logarithmic equation below:

$$\log_{3}(4x-6) + 8 = -\frac{2}{3}$$

$$-8 = -8$$

$$\log_{3}(4x-6) = -\frac{2}{3} - 8$$

$$\log_{3}(4x-6) = -\frac{2}{3} - \frac{24}{3}$$

$$\log_{3}(4x-6) = -\frac{2}{3} - \frac{24}{3}$$

$$\log_{3}(4x-6) = -\frac{2}{3} - \frac{24}{3}$$

$$\log_{3}(4x-6) = -\frac{26}{3}$$

$$\log_{3}(4x-6) = -\frac{26}{3}$$

$$0.000073 = 4x - 6$$

$$109_{3}(4x-6) = -\frac{26}{3}$$

$$1.5 = x$$

Example 10. Solve $y = \log_4(64)$ without using a calculator.

"4 TOTHE Y EQUALS 64"
$$4^{9} = 64$$

Note 8. Recall that $\pi \approx 3.14$. Similarly, we can define a new irrational number, $e \approx 2.718281828...$

Definition

The function given by $f(x) = e^x$ is called the NATURAL

EXPONENTIAL FUNCTION with natural base e.

Definition

A NATURAL LOGARITHM is a logarithm with base e. We write $\log_e(x)$ as

 $\underline{\ \ \ \ \ \ \ \ \ \ \ }$ The natural logarithm of a positive number x satisfies the following definition:

For
$$x > 0$$
, y= ln(x) IS EQUIVALENT TO $e^{y} = x$.

Since the functions $y=e^x$ and $y=\ln{(x)}$ are inverse functions, $\ln{(e^x)}=$ _______ for all x, and $e^{\ln{(x)}}=$ _______ for all x>0.

8.3 Properties of Logs

Basic Logarithm Properties

Two basic properties of logarithms are as follows:

$$\log_b(1) =$$

$$\log_b(b) =$$

One-to-One Property

The one-to-one property for logarithms states that $\log_b M = \log_b N$ if and only if

The Product Rule for Logarithms

The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of individual logarithms:

$$\frac{\log_b(M \cdot N) = \log_b(M) + \log_b(N)}{(FOR b > 0)}$$

Example 11. Expand $\log_2 xy$

$$\log_2(xy) = \log_2(x) + \log_2(y)$$

Example 12. Expand $\log_3 (30x(3x+4))$

$$= \log_3(30x) + \log_3(3x+4)$$

$$= \log_3(30) + \log_3(x) + \log_3(3x+4)$$

The Quotient Rule for Logarithms

The quotient rule for logarithms can be used to simplify a logarithm of a quotient by rewriting it as a difference of individual logarithms:

$$\log_b(\frac{M}{N}) = \log_b(M) - \log_b(N)$$
(FOR 670)

Example 13. Expand
$$\log_2\left(\frac{x}{y}\right)$$

$$\log_2\left(\frac{x}{y}\right) = \log_2(x) - \log_2(y)$$

Example 14. Expand
$$\log_{3}\left(\frac{7x^{2}+21x}{7x(x-1)(x-2)}\right)$$

QUOTIENT PULE

= $\log_{3}(7x^{2}+21x) - \log_{3}(7x(x-1)(x-2))$

\[
\begin{align*}
\text{PRODUCT PULE}
\end{align*}

= $\log_{3}(7x(x+3)) - \log_{3}(7x) + \log_{3}(x-1) + \log_{3}(x-2)$
\end{align*}

PRODUCT PULE

DISTRIBUTE NEGATIVE

= $\log_{3}(7x) + \log_{3}(x+3) - \log_{3}(x-1) - \log_{3}(x-2)$
\[
= $\log_{3}(7x) + \log_{3}(x+3) - \log_{3}(x-1) - \log_{3}(x-2)$

The Power Rule for Logarithms

The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as a product of the exponent times the logarithm of a base:

$$\log_b(M^n) = n\log_b(M)$$
(FOR b>0)

Example 15. Expand $\log_2 x^5$

Example 16. Use properties of logarithms to simplify the expression below:

$$\log\left(\frac{\sqrt{8x^{2}y^{3}}}{z^{4}}\right)$$

$$= \log\left(\sqrt{8x^{2}y^{3}}\right) - \log(z^{4})$$

$$= \log\left((8x^{2}y^{3})^{\frac{1}{2}}\right) - \log(z^{4})$$

$$= \log\left((8x^{2}y^{3})^{\frac{1}{2}}\right) - 4\log(z)$$

$$= \log\left((8x^{2}y^{3})^{\frac{1}{2}}\right) - 4\log(z)$$

$$= \frac{1}{2}\left[\log(8x^{2}y^{3})\right] - 4\log(z)$$

$$= \frac{1}{2}\left[\log(8x^{2}y^{3})\right] - 4\log(z^{2})$$

$$= \frac{1}{2}\left[\log(8) + \log(x^{2}) + \log(y^{3})\right] - 4\log(z)$$

$$= \frac{1}{2}\left[\log(8) + \log(x^{2}) + \log(y^{3})\right] - 4\log(z)$$

$$= \frac{\log(8)}{2} + \frac{1}{2}\log(x) + 3\log(y) - 4\log(z)$$

$$= \frac{\log(8)}{2} + \frac{1}{2}\log(x) + 3\log(y) - 4\log(z)$$

Example 17. Use properties of logarithms to simplify the expression below:

Example 18. Use properties of logarithm functions to solve the logarithmic equation below:

$$6 = \ln\left(\sqrt{\frac{4}{e^{x}}}\right)$$

$$6 = \ln\left(\left(\frac{4}{e^{x}}\right)^{1/2}\right)$$

$$6 = \frac{1}{2}\left(\ln\left(\frac{4}{e^{x}}\right)\right)$$

$$6 = \frac{1}{2}\left(\ln(4) - \ln(e^{x})\right)$$

$$6 = \frac{1}{2}\ln(4) - \frac{1}{2}\ln(e^{x}) \quad \text{wintex} = x$$

$$\left[6 = \frac{\ln(4)}{2} - \frac{x}{2}\right](2) \quad \text{wintex} = x$$

$$12 = \ln(4) - x$$

$$+ x = + x$$

$$x + 12 = \ln(4)$$

$$-12 = -12$$

$$x = \ln(4) - 12$$

8.4 Solve Exponential Functions

One-to-One Property of Exponential Functions

For any algebraic expressions S and T, and any positive real number $b \neq 1$, $b^S = b^T$ if and only if S = T.

Using the One-to-One Property to Solve Exponential Equations

- 1. Rewrite each side of the equation as a power with a **COMMON**BASE.....
- 2. Use the rules of exponents to simplify so that the resulting equation has the form

$$b^S = b^T$$

- 3. Use the One-to-One property to set the exponents equal.
- 4. Solve the resulting equation, S = T for the unknown.

Example 19. Solve the exponential equation below:

$$2^{-5x-6} = 2^{4x+4}$$

$$\Rightarrow USE ONE -TO -ONE$$

$$-5x-6 = 4x+4$$

$$+5x = +5x$$

$$-6 = 4x+4$$

$$-4 = -4$$

$$-10 = 9x$$

$$19$$

$$-10 = 4x$$

Example 20. Solve the exponential equation below:

$$\frac{4^{3x-3}}{(2^2)^{5x-3}} = 2^{-4x+5}$$

$$\frac{(2^2)^{5x-3}}{(2^2)^{5x-3}} = 2^{-4x+5}$$
BECAUSE $4 = 2^2$

$$\frac{2(5x-3) = -4x+5}{14x-6} = 5$$

$$\frac{14x-6 = 5}{14x = 11} \Rightarrow x = \frac{11}{14}$$

$$\frac{14x-6 = 5}{14x-6} = 5$$
Example 21. Solve the exponential equation below:

$$\frac{(\frac{1}{4})^{4x-2} - 2^{-6x+6}}{2^{-6x+6}} \Rightarrow \frac{1}{4} = \frac{1}{2^2} = 2^{-2}$$

$$\frac{(2^{-2})^{4x-2}}{14x-6} = 2^{-6x+6}$$

$$\frac{(2^{-2})^{4x-2}}{2^{-2}} = 2^{-6x+6}$$

$$\frac{(2^{-2})^{4x-2}}{2^{-2}}$$

Note 9. Using the one-to-one property is very useful, but sometimes we will be given an equation in which the one-to-one property cannot be applied.

Solving Exponential Equations Using Logarithms

- 1. Take the logarithm of both sides of the equation.
- 2. If one of the terms in the equation has base 10, use the COMMON LOGARITHM.
- 3. If neither of the terms in the equation has base 10, then use the NATURAL LOGARITHM.
- 4. Use the properties of logarithms to solve for the unknowns.

Example 22. Solve the exponential equation below:

$$\ln(6^{-5x-6}) = \ln(5^{6x+4})$$
 POWER RULE
 $(-5x-6)\ln(6) = (6x+4)\ln(5)$

$$-5x \ln(6) - 6\ln(6) = 6x \ln(5) + 4\ln(5)$$

$$-6x \ln(5) = -6x \ln(5)$$
ON ONE SIDE TO SOLVE

$$-5x \ln(6) - 6x \ln(5) - 6\ln(6) = 4\ln(5)$$

+6 \ln(6) = +6\ln(6)

$$-5 \times \ln(6) - 6 \times \ln(5) = 6 \ln(6) + 4 \ln(5)$$

$$\times (-5 \ln(6) - 6 \ln(5)) = 6 \ln(6) + 4 \ln(5)$$

$$\times = \frac{6 \ln(6) + 4 \ln(5)}{-5 \ln(6) - 6 \ln(5)}$$
21

Example 23. Solve the exponential equation below:

A In(1)=0

$$27^{-6x-3} = \left(\frac{1}{16}\right)^{2x+3}$$

$$27^{-6\chi-3} = \frac{1^{2\chi+3}}{16^{2\chi+3}}$$

$$\ln (27^{-6x-3}) = \ln \left(\frac{1}{16^{2x+3}} \right)$$

$$(-6x-3)\ln(27) = \ln(1^{2x+3}) - \ln(16^{2x+3})$$

$$-6x\ln(27)-3\ln(27)=(2x+3)\ln(1)-(2x+3)\ln(16)$$

$$-6x\ln(27) - 3\ln(27) = -2x\ln(16) - 3\ln(16)$$

$$+ 2x \ln(16) = +2x \ln(16)$$

$$-6xln(27) + 2xln(16) - 3ln(27) = -3ln(16)$$

$$+3ln(27) = +3ln(27)$$

$$-6x\ln(27) + 2x\ln(16) = -3\ln(16) + 3\ln(27)$$

$$X(-6|n(27) + 2|n(16)) = -3|n(16) + 3|n(27)$$

$$X(-6\ln(27) + 2\ln(16)) = -3\ln(16) + 3\ln(27)$$

$$X = -3\ln(16) + 3\ln(27)$$

$$-6\ln(27) + 2\ln(16)$$
22