Module 9L Lecture Notes

MAC1105

Summer B 2019

9 Operations on Functions

9.1 Domain

Operations on Functions

For two functions $f(x)$ and $g(x)$ with real number outputs, we define new functions $f+g, f-g, f g$, and $\frac{f}{g}$ by:

- $(f+g)(x)=$ \qquad
- $(f-g)(x)=$ \qquad
- $(f g)(x)=$ \qquad
- $\left(\frac{f}{g}\right)(x)=\longrightarrow$ where $g(x) \neq 0$

Example 1. Find and simplify the functions $(g-f)(x)$ and $\left(\frac{g}{f}\right)(x)$, given $f(x)=x-1$ and $g(x)=x^{2}-1$.

Domain of Algebra of Functions

Let f and g be two functions with domains A and B. Then,

Name	Definition	Domain
$f \pm g$		
$f g$		
$\frac{f}{g}$		

Example 2. Determine the domain of each function below and then determine the domain of $f+g$, $f g$, and $\frac{f}{g}$:

$$
\begin{gathered}
f(x)=-5 x^{2}-6 x+3 \\
g(x)=\sqrt{3 x-4}
\end{gathered}
$$

Example 3. Determine the domain of each function below and then determine the domain of $f+g$, $f g$, and $\frac{f}{g}$:

$$
\begin{gathered}
f(x)=-5 x^{3}+5 x^{2}-5 x-6 \\
g(x)=\sqrt{4 x-6}
\end{gathered}
$$

Example 4. Determine the domain of each function below and then determine the domain of $f+g$, $f g$, and $\frac{f}{g}$:

$$
\begin{gathered}
f(x)=6 x^{3}+6 x^{2}-3 x+6 \\
g(x)=-\frac{1}{4 x+3}
\end{gathered}
$$

9.2 Composition

Definition

The process of combining functions so that the output of one function becomes the input of another is known as \qquad
\qquad
\qquad For any input x and functions f and g, this action defines a \qquad , which we write as $f \circ g$ such that

The domain of the composite function $f \circ g$ is all x such that x is in the domain of \qquad and $g(x)$ is in the domain of \qquad

Note 1. It is important to keep in mind the order of operations when composing functions. That is, $(f \circ g)(x)=f(g(x))$ means that the function f takes \qquad as an input and yields an output of \qquad .

Example 5. For the two functions below, evaluate $(f \circ g)(-3)$:

$$
\begin{gathered}
f(x)=4 x^{2}-4 x+4 \\
g(x)=-3 x^{2}-3 x+4
\end{gathered}
$$

Example 6. For the two functions below, evaluate $(f \circ g)(3)$ and $(g \circ f)(3)$:

$$
\begin{gathered}
f(x)=5 x^{2}-5 x-3 \\
g(x)=\sqrt{5 x-4}
\end{gathered}
$$

Note 2. The example above shows that function compositions is not \qquad
That is, $(f \circ g)(x) \neq$ \qquad

Note 3. The product of functions $f g$ is not the same as the function composition $f(g(x))$ because
\qquad

9.3 One-to-One

Definition

A function f is a \qquad - \qquad - \qquad function if each value of the dependent variable (y) corresponds to exactly one value of the independent variable (x).

Note 4. If a function f is a set of ordered pairs, then f is one-to-one of no two ordered pairs have the same second element. That is, if each y has only one x.

Horizontal Line Test

A function f is one-to-one if and only if any horizontal line intersects the graph of f at most once.

Example 7. Is the following graph one-to-one?

Example 8. Is the following graph one-to-one?

Algebraically Determine if a Function is One-to-One

To show that a function is one-to-one, you can show that $f(y)=f(x)$ if and only if
\qquad

Example 9. Is the following function one-to-one?

$$
f(x)=3 x+4
$$

Example 10. Is the following function one-to-one?

$$
f(x)=x^{3}-1
$$

Example 11. Is the following function one-to-one?

$$
f(x)=\sqrt{x-1}+3
$$

9.4 Inverse

Definition

For any one-to-one function $f(x)=y$, a function $f^{-1}(x)$ is an \qquad
\qquad of f if \qquad . This can also be written as $f^{-1}(f(x))=x$ for all x in the domain of f. It also follows that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of f^{-1}.

Note 5. Not every function has an inverse, and $f^{-1}(x) \neq$ —. Given a one-to-one function, f, the inverse of the coordinate pair $(x, f(x))$ is \qquad .

Example 12. For a particular one-to-one function $f(2)=4$ and $f(5)=12$, what are the corresponding input and output values for the inverse function?

How to Determine if Two Functions $f(x)$ and $g(x)$ are Inverses of Each Other

1. Determine whether \qquad or \qquad .
2. If either statement is true, then both are true, and $g=f^{-1}$ and $f=g^{-1}$. If either statement is false, then both are false, and $g \neq f^{-1}$ and $f \neq g^{-1}$.

Domain and Range of Inverse Functions

The \qquad of a function $f(x)$ is the domain of the inverse function $f^{-1}(x)$. The
\qquad of $f(x)$ is the range of $f^{-1}(x)$.

How to Find the Domain and Range of an Inverse Function

1. If the original function is one-to-one, write the range of the original function as the
\qquad of the inverse function.
2. If the original function is one-to-one, write the domain of the original function as the
\qquad of the inverse function.
3. If the domain of the original function needs to be restricted to make it one-to-one, then this restricted domain becomes the \qquad of the inverse function.

How to Determine the Inverse of a Function

1. Check that f is a \qquad - \qquad - \qquad function.
2. Solve for x.
3. Interchange x and y.

Example 13. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

$$
f(x)=(4 x-5)^{3}-4
$$

Example 14. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

$$
f(x)=\sqrt{-3 x-5}+7
$$

Example 15. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

$$
f(x)=(2 x+7)^{2}+2
$$

