Module 9L Lecture Notes

MAC1105

Summer B 2019

9 Operations on Functions

9.1 Domain

Operations on Functions

For two functions f(x) and g(x) with real number outputs, we define new functions f + g, f - g, fg,

Example 1. Find and simplify the functions (g - f)(x) and $\left(\frac{g}{f}\right)(x)$, given f(x) = x - 1 and $g(x) = x^2 - 1$.

Domain of Algebra of Functions

Let f and g be two functions with domains A and B. Then,

Name	Definition	Domain
$f\pm g$		
fg		
$\frac{f}{g}$		

Example 2. Determine the domain of each function below and then determine the domain of f+g, fg, and $\frac{f}{g}$:

$$f(x) = -5x^2 - 6x + 3$$
$$g(x) = \sqrt{3x - 4}$$

Example 3. Determine the domain of each function below and then determine the domain of f+g, fg, and $\frac{f}{g}$:

$$f(x) = -5x^{3} + 5x^{2} - 5x - 6$$
$$g(x) = \sqrt{4x - 6}$$

Example 4. Determine the domain of each function below and then determine the domain of f+g,

$$fg$$
, and $\frac{J}{g}$:

$$f(x) = 6x^3 + 6x^2 - 3x + 6$$

$$g(x) = -\frac{1}{4x+3}$$

9.2 Composition

Definition

Note 1. It is important to keep in mind the order of operations when composing functions. That is, $(f \circ g)(x) = f(g(x))$ means that the function f takes ______ as an input and yields an output of ______.

Example 5. For the two functions below, evaluate $(f \circ g)(-3)$:

$$f(x) = 4x^{2} - 4x + 4$$
$$g(x) = -3x^{2} - 3x + 4$$

Example 6. For the two functions below, evaluate $(f \circ g)(3)$ and $(g \circ f)(3)$:

$$f(x) = 5x^2 - 5x - 3$$
$$g(x) = \sqrt{5x - 4}$$

Note 2. The example above shows that function compositions is not ______.

That is, $(f \circ g)(x) \neq$ _____.

Note 3. The product of functions fg is not the same as the function composition f(g(x)) because

_____≠____.

9.3 One-to-One

Definition

A function f is a ______ - ____ - _____ function if each value of the

dependent variable (y) corresponds to exactly one value of the independent variable (x).

Note 4. If a function f is a set of ordered pairs, then f is one-to-one of no two ordered pairs have the same second element. That is, if each y has only one x.

Horizontal Line Test

A function f is one-to-one if and only if any horizontal line intersects the graph of f at most once.

Algebraically Determine if a Function is One-to-One

To show that a function is one-to-one, you can show that f(y) = f(x) if and only if

Example 9. Is the following function one-to-one?

$$f(x) = 3x + 4$$

Example 10. Is the following function one-to-one?

 $f(x) = x^3 - 1$

Example 11. Is the following function one-to-one?

$$f(x) = \sqrt{x-1} + 3$$

9.4 Inverse

Definition

For any one-to-one function f(x) = y, a function $f^{-1}(x)$ is an ______ _____ of f if ______. This can also be written as $f^{-1}(f(x)) = x$ for all x in the domain of f. It also follows that $f(f^{-1}(x)) = x$ for all x in the domain of f^{-1} .

Note 5. Not every function has an inverse, and $f^{-1}(x) \neq ---$. Given a one-to-one function, f, the inverse of the coordinate pair (x, f(x)) is _____.

Example 12. For a particular one-to-one function f(2) = 4 and f(5) = 12, what are the corresponding input and output values for the inverse function?

How to Determine if Two Functions f(x) and g(x) are Inverses of Each Other

- 1. Determine whether _____ or _____
- 2. If either statement is true, then both are true, and $g = f^{-1}$ and $f = g^{-1}$. If either statement is false, then both are false, and $g \neq f^{-1}$ and $f \neq g^{-1}$.

Domain and Range of Inverse Functions

The ______ of a function f(x) is the domain of the inverse function $f^{-1}(x)$. The ______ of f(x) is the range of $f^{-1}(x)$.

How to Find the Domain and Range of an Inverse Function

- 1. If the original function is one-to-one, write the range of the original function as the ______ of the inverse function.
- 2. If the original function is one-to-one, write the domain of the original function as the ______ of the inverse function.
- 3. If the domain of the original function needs to be restricted to make it one-to-one, then this restricted domain becomes the ______ of the inverse function.

How to Determine the Inverse of a Function

- 1. Check that f is a ______ ____ _____ function.
- 2. Solve for x.
- 3. Interchange x and y.

Example 13. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

$$f(x) = (4x - 5)^3 - 4$$

Example 14. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

$$f(x) = \sqrt{-3x - 5} + 7$$

Example 15. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

$$f(x) = (2x+7)^2 + 2$$