Module 9L Lecture Notes
MAC1105

Summer B 2019

9 Operations on Functions
9.1 Domain

Operations on Functions
For two functions $f(x)$ and $g(x)$ with real number outputs, we define new functions $f+g, f-g, f g$, and $\frac{f}{g}$ by:

- $(f+g)(x)=f(x)+g(x)$
- $(f-g)(x)=f(\mathbf{x})-\boldsymbol{g}(\mathbf{x})$
- $(f g)(x)=f(x) \boldsymbol{g}(x)$
- $\left(\frac{f}{g}\right)(x)=\frac{\mathbf{f}(\mathbf{X})}{\boldsymbol{g}(\mathbf{X})}$ where $g(x) \neq 0$

Example 1. Find and simplify the functions $(g-f)(x)$ and $\left(\frac{g}{f}\right)(x)$, given $f(x)=x-1$ and $g(x)=x^{2}-1$.

1. $(g-f)(x)=g(x)-f(x)=\left(x^{2}-1\right)-(x-1)=x^{2}-1-x+1=x^{2}-x$

$$
\text { 2. }\left(\frac{g}{f}\right)(x)=\frac{g(x)}{f(x)}=\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{(x+1)}=x+1, x \neq 1
$$

Domain of Algebra of Functions

Let f and g be two functions with domains A and B. Then,

Name	Definition	Domain
$f \pm g$	$f(x) \pm g(x)$	$A \cap B$
$f g$	$f(x) g(x)$	$A \cap B$
$\frac{f}{g}$	$\frac{f(x)}{g(x)}$	$A \cap B \cap\{x: g(x) \neq 0\}$

Example 2. Determine the domain of each function below and then determine the domain of $f+g$,

$$
f g, \text { and } \frac{f}{g}:
$$

$$
\begin{gathered}
f(x)=-5 x^{2}-6 x+3 \\
g(x)=\sqrt{3 x-4}
\end{gathered}
$$

DOMAIN OF $f(x)$: $(-\infty, \infty)$
DOMAIN OF $g(x): \quad 3 x-4 \geqslant 0$

$$
\begin{aligned}
& 3 x \geqslant 4 \\
& x \geqslant \frac{4}{3} \quad \Rightarrow \text { DOMAIN OF } g(x) \text { is }[4 / 3, \infty) \text { "B" }
\end{aligned}
$$

1. DOMAIN OF $f(x)+g(x)$ AND $f(x) g(x)$ is $A \cap B$:

$$
(-\infty, \infty) \cap[4 / 3, \infty)=[4 / 3, \infty)
$$

2. DOMAIN OF $\frac{f(x)}{g(x)}$ is $A \cap B \cap\{x: g(x) \neq 0\}$:
\& $g(x)=0$ WHEN $x=4 / 3$, so $A \cap B \cap\{x: g(x) \neq 0\}=(4 / 3, \infty)$

Example 3. Determine the domain of each function below and then determine the domain of $f+g$,

$$
f g, \text { and } \frac{f}{g}:
$$

$$
\begin{gathered}
f(x)=-5 x^{3}+5 x^{2}-5 x-6 \\
g(x)=\sqrt{4 x-6}
\end{gathered}
$$

Domain of $f(x):(-\infty, \infty) \longleftrightarrow$ " A "
DOMAIN OF $g(x): 4 x-6 \geqslant 0$

$$
\begin{aligned}
& 4 x \geqslant 6 \\
& x \geqslant 6 / 4 \\
& x \geqslant 3 / 2
\end{aligned} \text { DOMAIN of } g(x) \text { is }[3 / 2, \infty) \text { "B" }
$$

I. DOMAIN OF $f(x)+g(x)$ AND $f(x) g(x)$ is $A \cap B$:

$$
(-\infty, \infty) \cap[3 / 2, \infty)=[3 / 2, \infty)
$$

2. DOMAIN OF $\frac{f(x)}{g(x)}$ is $A \cap B \cap\{x: g(x) \neq 0\}$:

* $g(x)=0$ WHEN $x=3 / 2$, so $A \cap B \cap\{x: g(x) \neq 0\}=(3 / 2, \infty)$

Example 4. Determine the domain of each function below and then determine the domain of $f+g$, $f g$, and $\frac{f}{g}$:

$$
\begin{gathered}
f(x)=6 x^{3}+6 x^{2}-3 x+6 \\
g(x)=-\frac{1}{4 x+3}
\end{gathered}
$$

DOMAIN OF $f(x)$: $(-\infty, \infty)$
"A"

DOMAIN OF $g(x)$: ALL REAL NUMBERS EXCEPT $4 x+3=0$:

$$
\begin{aligned}
& \begin{aligned}
4 x+3 & =0 \\
4 x & =-3 \\
x & =-\frac{3}{4}
\end{aligned} \quad \Rightarrow \text { DOMAIN OF } g(x) \text { IS ALL REAL } \\
& \text { NUMBERS EXCEPT } x=-\frac{3}{4} \\
& \Rightarrow\left(-\infty,-\frac{3}{4}\right) \cup\left(-\frac{3}{4}, \infty\right)^{\prime \prime} B^{\prime \prime} \\
&
\end{aligned}
$$

I. DOMAIN OF $f(x)+g(x)$ AND $f(x) g(x)$ is $A \cap B$:

$$
(-\infty, \infty) \wedge\left[\left(-\infty,-\frac{3}{4}\right) \cup\left(-\frac{3}{4}, \infty\right)\right]=\left(-\infty,-\frac{3}{4}\right) \cup\left(-\frac{3}{4}, \infty\right)
$$

2. DOMAIN OF $\frac{f(x)}{g(x)}$ is $A \cap B \cap\{x: g(x) \neq 0\}$:

* $g(x)$ DOES \sim OT EvER Equal 0 here! So, $A \cap B \cap\{x: g(x) \neq 0\}=A \cap B$
\Rightarrow DOMAIN IS SAME AS 1:

$$
\left(-\infty,-\frac{3}{4}\right) \cup\left(-\frac{3}{4}, \infty\right)
$$

9.2 Composition

Definition

The process of combining functions so that the output of one function becomes the input of another is known as COMPOSITION OF FUNCTIONS. For any input x and functions f and g, this action defines a COMPOSITE FUNCTION, which we write as $f \circ g$ such that

$$
(f \circ g)(x)=f\left(\frac{g(x) \text { THE OUTPUT OF } g \text {, IS }}{\left(\frac{q)}{\text { Tx IS THE INPUT OF } g} \text { THE INPUT OF } f\right.}\right.
$$

The domain of the composite function $f \circ g$ is all x such that x is in the domain of g and $g(x)$ is in the domain of \boldsymbol{f}

Note 1. It is important to keep in mind the order of operations when composing functions. That is, $(f \circ g)(x)=f(g(x))$ means that the function f takes $\boldsymbol{g}(\mathbf{X})$ as an input and yields an output of $f(g(x))$

Example 5. For the two functions below, evaluate $(f \circ g)(-3)$:

$$
\begin{aligned}
& f(x)=4 x^{2}-4 x+4 \\
& g(x)=-3 x^{2}-3 x+4
\end{aligned}
$$

$$
(f \circ g)(-3)=f(g(-3))
$$

1. FIND $g(-3): g(x)=-3 x^{2}-3 x+4$

$$
\begin{aligned}
g(-3) & =-3(-3)^{2}-3(-3)+4 \\
& =-3(9)+9+4 \\
& =-27+9+4 \\
& =-14 \\
\Rightarrow g(-3) & =-14
\end{aligned}
$$

2. FIND $f(g(-3))$:

$$
\begin{aligned}
& f(g(-3))=f(-14) \\
& f(x)=4 x^{2}-4 x+4 \\
& f(-14)=4(-14)^{2}-4(-14)+4 \\
&=4(196)+56+4 \\
&=784+56+4 \\
&=844 \\
& \Rightarrow(f \circ g)(-3)=f(g(-3))=f(-14)=844
\end{aligned}
$$

Example 6. For the two functions below, evaluate $(f \circ g)(3)$ and $(g \circ f)(3)$:

$$
\begin{aligned}
& f(x)=5 x^{2}-5 x-3 \\
& g(x)=\sqrt{5 x-4} \\
& \text { 1. }(f \circ g)(3)=f(g(3)) \\
& \text { * } g(3)=\sqrt{5(3)-4} \\
& =\sqrt{15-4}=\sqrt{11} \\
& \Rightarrow(f \circ g)(3)=f(g(3))=f(\sqrt{11}) \\
& \text { * } f(\sqrt{11})=5(\sqrt{11})^{2}-5(\sqrt{11})-3 \\
& =5(11)-5 \sqrt{11}-3 \\
& =55-5 \sqrt{11}-3 \\
& =52-5 \sqrt{11} \\
& \Rightarrow(f \circ g)(3)=52-5 \sqrt{11} \\
& \text { 2. }(g \circ f)(3)=g(f(3)) \\
& \text { * } f(3)=5(3)^{2}-5(3)-3 \\
& =5(9)-15-3 \\
& =45-15-3 \\
& =27 \\
& \Rightarrow(g \circ f)(3)=g(f(3))=g(27) \\
& \text { * } g(27)=\sqrt{5(27)-4} \\
& =\sqrt{135-4} \\
& =\sqrt{131} \\
& \Rightarrow(g \circ f)(3)=\sqrt{131}
\end{aligned}
$$

Note 2. The example above shows that function compositions is not COMMUTATIVE.
That is, $(f \circ g)(x) \neq(g \circ f)(\mathbf{X})$.
Note 3. The product of functions $f g$ is not the same as the function composition $f(g(x))$ because $f(g(x)) \neq f(x) g(x)$

9.3 One-to-One

Definition

A function f is a ONF - TO-ONE function if each value of the dependent variable (y) corresponds to exactly one value of the independent variable (x).

Note 4. If a function f is a set of ordered pairs, then f is one-to-one of no two ordered pairs have the same second element. That is, if each y has only one x.

Horizontal Line Test

A function f is one-to-one if and only if any horizontal line intersects the graph of f at most once.

Example 7. Is the following graph one-to-one?

Example 8. Is the following graph one-to-one?

Algebraically Determine if a Function is One-to-One
To show that a function is one-to-one, you can show that $f(y)=f(x)$ if and only if $y=x$

Example 9. Is the following function one-to-one?

$$
f(x)=3 x+4
$$

GRAPH:

\Rightarrow YES, $1-1$
(ITPASSES HORIZONTAL LINE TEST)

Example 10. Is the following function one-to-one?

$$
f(x)=x^{3}-1
$$

GRAPH SKETCH:

Example 11. Is the following function one-to-one?

$$
f(x)=\sqrt{x-1}+3
$$

$$
g(h, k)=(1,3)
$$

GRAPH:

* $f(x)=(x-1)^{2}+3$ i> NOT $1-1$ BECAUSE IT DOES NOT PASS THE horizontal line test:

9.4 Inverse

Definition

For any one-to-one function $f(x)=y$, a function $f^{-1}(x)$ is an INVERSE FUNCTIO~ of f if $\boldsymbol{f}^{-1}(\boldsymbol{y})=\mathbf{X}$. This can also be written as $f^{-1}(f(x))=x$ for all x in the domain of f. It also follows that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of f^{-1}.

Note 5. Not every function has an inverse, and $f^{-1}(x) \neq \frac{\mathbf{1}}{\mathbf{f (X)}}$. Given a one-to-one function, f, the inverse of the coordinate pair $(x, f(x))$ is $(\boldsymbol{f}(\mathbf{X}), \mathbf{X})$.

Example 12. For a particular one-to-one function $f(2)=4$ and $f(5)=12$, what are the corresponding input and output values for the inverse function?
$f(2)=4 \Rightarrow f^{-1}(4)=2 \quad(2,4) \rightarrow(4,2)$
$f(5)=12 \Rightarrow f^{-1}(12)=5 \quad(5,12) \rightarrow(12,5)$

How to Determine if Two Functions $f(x)$ and $g(x)$ are Inverses of Each Other

1. Determine whether $f(g(x))=x$ or $g(f(x))=x$.
2. If either statement is true, then both are true, and $g=f^{-1}$ and $f=g^{-1}$. If either statement is false, then both are false, and $g \neq f^{-1}$ and $f \neq g^{-1}$.

Domain and Range of Inverse Functions

The RANGE of a function $f(x)$ is the domain of the inverse function $f^{-1}(x)$. The DOMAIN of $f(x)$ is the range of $f^{-1}(x)$.

How to Find the Domain and Range of an Inverse Function

1. If the original function is one-to-one, write the range of the original function as the DOMAIN of the inverse function.
2. If the original function is one-to-one, write the domain of the original function as the RANGE of the inverse function.
3. If the domain of the original function needs to be restricted to make it one-to-one, then this restricted domain becomes the R ANGE of the inverse function.

How to Determine the Inverse of a Function

1. Check that f is a ONE - TO - ONE function.
2. Solve for x.
3. Interchange x and y.

Example 13. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

$$
f(x)=(4 x-5)^{3}-4
$$

1. Is $f 1-1$?
yes! in general, x^{3} is $1-1$

$$
\begin{aligned}
& \text { 2. } y=(4 x-5)^{3}-4 \quad \text {) INTERCHANGE } x \text { AND } y \\
& x=(4 y-5)^{3}-4 \\
& x-4=(4 y-5)^{3} \\
& (x-4)^{1 / 3}=\left[(4 y-5)^{3}\right]^{1 / 3} \\
& \sqrt[3]{x-4}=4 y-5 \\
& \sqrt[3]{x-4}+5=4 y \\
& \frac{\sqrt[3]{x-4}+5}{4}=y \Rightarrow f^{-1}(x)=\frac{1}{4} \sqrt[3]{x-4}+\frac{5}{4}
\end{aligned}
$$

* RANGE OF $f(x)=(4 x-5)^{3}-4$ is $(-\infty, \infty)$

$$
\Rightarrow \text { DOMAIN OF } f^{-1}(x) \text { is }(-\infty, \infty)
$$

Example 14. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

* RANGE is

$$
f(x)=\sqrt{-3 x-5}+7
$$

$$
[7, \infty) \text { or } y \geqslant 7
$$

1. Is $f(x) 1-1$?

$$
\text { YES! SQUARE ROOT FUNCTION } \Rightarrow 1-1
$$

2.

$$
\begin{aligned}
& \text { 2. } \left.\begin{array}{l}
y=\sqrt{-3 x-5}+7 \\
x=\sqrt{-3 y-5}+7 \\
x-7=\sqrt{-3 y-5} \\
(x-7)^{2}=(\sqrt{-3 y-5})^{2} \quad \begin{array}{l}
x^{2}-14 x+49=-3 y-5 \\
x^{2}-14 x+54=-3 y \\
\Rightarrow f^{-1}(x)=-\frac{1}{3} x^{2}+\frac{14}{3} x-18
\end{array}
\end{array}\right)=y
\end{aligned}
$$

* DOMAIN OF $f^{-1}(x)$ is THE RAUGE OF $f(x)$:

RANGE OF $f(x)$ is $[7, \infty)$
\Rightarrow DOMAIN OF $f^{-1}(x)$ is $[7, \infty)$

Example 15. Determine if the following function is one-to-one. If the function is one-to-one, find the inverse and define the domain on which the inverse is valid:

$$
f(x)=(2 x+7)^{2}+2
$$

1. Is $f 1-1$?

no! parabolas are nut 1-1
\Rightarrow NO INUERSE FUNCTION EXISTS!

