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9 Operations on Functions

9.1 Domain

Operations on Functions

For two functions f(x) and g(x) with real number outputs, we define new functions f +g, f �g, fg,

and
f

g
by:

• (f + g)(x) =

• (f � g)(x) =

• (fg)(x) =

•
✓
f

g

◆
(x) = where g(x) 6= 0

Example 1. Find and simplify the functions (g � f)(x) and

✓
g

f

◆
(x), given f(x) = x � 1 and

g(x) = x2 � 1.
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Domain of Algebra of Functions

Let f and g be two functions with domains A and B. Then,
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Example 2. Determine the domain of each function below and then determine the domain of f+g,

fg, and
f

g
:

f(x) = �5x2 � 6x+ 3

g(x) =
p
3x� 4

3
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Example 3. Determine the domain of each function below and then determine the domain of f+g,

fg, and
f

g
:

f(x) = �5x3 + 5x2 � 5x� 6

g(x) =
p
4x� 6

4
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Example 4. Determine the domain of each function below and then determine the domain of f+g,

fg, and
f

g
:

f(x) = 6x3 + 6x2 � 3x+ 6

g(x) = � 1

4x+ 3

5
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9.2 Composition

Definition

The process of combining functions so that the output of one function becomes the input of another

is known as . For any input x and

functions f and g, this action defines a , which we

write as f � g such that

The domain of the composite function f � g is all x such that x is in the domain of

and g(x) is in the domain of .

Note 1. It is important to keep in mind the order of operations when composing functions. That

is, (f � g)(x) = f(g(x)) means that the function f takes as an input and yields an

output of .
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Example 5. For the two functions below, evaluate (f � g)(�3) :

f(x) = 4x2 � 4x+ 4

g(x) = �3x2 � 3x+ 4
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Example 6. For the two functions below, evaluate (f � g)(3) and (g � f)(3) :

f(x) = 5x2 � 5x� 3

g(x) =
p
5x� 4

Note 2. The example above shows that function compositions is not .

That is, (f � g)(x) 6= .

Note 3. The product of functions fg is not the same as the function composition f(g(x)) because

6= .
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9.3 One-to-One

Definition

A function f is a - - function if each value of the

dependent variable (y) corresponds to exactly one value of the independent variable (x).

Note 4. If a function f is a set of ordered pairs, then f is one-to-one of no two ordered pairs have

the same second element. That is, if each y has only one x.

Horizontal Line Test

A function f is one-to-one if and only if any horizontal line intersects the graph of f at most once.

Example 7. Is the following graph one-to-one?
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Example 8. Is the following graph one-to-one?

Algebraically Determine if a Function is One-to-One

To show that a function is one-to-one, you can show that f(y) = f(x) if and only if

.
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Example 9. Is the following function one-to-one?

f(x) = 3x+ 4

Example 10. Is the following function one-to-one?

f(x) = x3 � 1
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Example 11. Is the following function one-to-one?

f(x) =
p
x� 1 + 3
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9.4 Inverse

Definition

For any one-to-one function f(x) = y, a function f�1(x) is an

of f if . This can also be written as f�1(f(x)) = x

for all x in the domain of f . It also follows that f(f�1(x)) = x for all x in the domain of f�1.

Note 5. Not every function has an inverse, and f�1(x) 6= . Given a one-to-one function, f ,

the inverse of the coordinate pair (x, f(x)) is .

Example 12. For a particular one-to-one function f(2) = 4 and f(5) = 12, what are the corre-

sponding input and output values for the inverse function?

How to Determine if Two Functions f(x) and g(x) are Inverses of Each Other

1. Determine whether or .

2. If either statement is true, then both are true, and g = f�1 and f = g�1. If either statement

is false, then both are false, and g 6= f�1 and f 6= g�1.

Domain and Range of Inverse Functions

The of a function f(x) is the domain of the inverse function f�1(x). The

of f(x) is the range of f�1(x).
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How to Find the Domain and Range of an Inverse Function

1. If the original function is one-to-one, write the range of the original function as the

of the inverse function.

2. If the original function is one-to-one, write the domain of the original function as the

of the inverse function.

3. If the domain of the original function needs to be restricted to make it one-to-one, then this

restricted domain becomes the of the inverse function.

How to Determine the Inverse of a Function

1. Check that f is a - - function.

2. Solve for x.

3. Interchange x and y.
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Example 13. Determine if the following function is one-to-one. If the function is one-to-one, find

the inverse and define the domain on which the inverse is valid:

f(x) = (4x� 5)3 � 4
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Example 14. Determine if the following function is one-to-one. If the function is one-to-one, find

the inverse and define the domain on which the inverse is valid:

f(x) =
p
�3x� 5 + 7
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Example 15. Determine if the following function is one-to-one. If the function is one-to-one, find

the inverse and define the domain on which the inverse is valid:

f(x) = (2x+ 7)2 + 2
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