Lecture 25: Section 4.1 Angles and Their Measure

Angle - initial side, terminal side, vertex
Standard position of an angle
Positive and negative angles
Coterminal angle
Central angle
Radians
Complementary and suppplementary angles
Degree measure and radian measure
Arc length, s
Area of a sector
Linear speed
Angular speed

An angle is formed by rotating a ray around its endpoint. The starting position of the ray is the initial side of the angle, and the position after rotation is the terminal side of the angle. The endpoint of the ray is called the vertex.

An angle θ is said to be in standard position if its vertex is in the origin and its initial side coincides with the positive x-axis.

If the rotation is in the counterclockwise direction, the angle is positive; if the rotation is clockwise, the angle is negative.

Angles α and β are coterminal angles if they have the same initial and terminal sides.

A central angle is an angle whose vertex is at the center of a circle.

Radian Measure

Def. One radian is a measure of the central angle that intercepts an arc whose length is equal to the radius. Algebraically, this means that

$$
\theta=\frac{s}{r} \nleftarrow
$$

where θ is measured in radians.

$$
\begin{aligned}
& \theta=\text { ANGLLE INRADIAN } \\
& \text { MEASUREMENT } \\
& S=\text { ARC LENGITH }
\end{aligned}
$$

$$
r=\text { RADIUS }
$$

\checkmark LENGTH OF ARC IS equal to the radius

$$
\begin{aligned}
& S=r \\
& \theta=\mid \text { RADIAN }
\end{aligned}
$$

$\mathcal{C I R C U M F E R E N C E ~}=\pi d$
NOTE: For the angle $\theta=1$ revolution:
$=\pi(2 r)$
$=2 \pi r$
The length of the arc (circumference) $s=2 \pi r$
Therefore, $\theta=\frac{s}{r}=\frac{2 \pi r}{r}=2 \pi$. \nless
1 REVOLUTION $=2 \pi$ RADIANS
We have,
1 revolution $=2 \pi$ radians

NOTE: If $0 \leq \theta \leq 2 \pi$, the standard position of the angle θ in the Cartesian coordinate system is shown below:
$3\left(\frac{\pi}{2}\right)=\frac{3 \pi}{2}$

NOTE: Given an angle θ, the coterminal angles to θ are
$(2 \pi) n=2 n \pi$

$$
\theta+2 n \pi
$$

where n is an integer.
nit an
INTEGER
ex. Find the angle with the smallest positive measure that is coterminal with $\theta=-\frac{21 \pi}{4}$.

$$
\begin{array}{rlrl}
n=1: & -\frac{21 \pi}{4}+2 \pi=-\frac{21 \pi}{4}+\frac{8 \pi}{4}=-\frac{13 \pi}{4} & n=3:-\frac{21 \pi}{4}+2 \pi(3) & =-\frac{21 \pi}{4}+\frac{24 \pi}{4} \\
n=2:-\frac{21 \pi}{4}+2 \pi(2)=-\frac{21 \pi}{4}+\frac{16 \pi}{4}=-\frac{5 \pi}{4} & & =\frac{3 \pi}{4}
\end{array}
$$

Checkpoint: Lecture 25, problem 1

Def. Given two positive angles α and β,

1. α and β are complementary if $\quad \alpha+\beta=\frac{\pi}{2}$ or α

* $\frac{\pi}{2}$ and 90° are the same thing!

$$
\alpha+\beta=90^{\circ}
$$

2. α and β are supplementary if $\begin{aligned} & \alpha+\beta=\pi \\ & \alpha+\beta=180^{\circ}\end{aligned} o^{\circ} \alpha$

SUPPLEMENTARY

ex. Find the complement and supplement of the angle

$$
\theta=\frac{\pi}{7} \text {. LET } \beta=\operatorname{ANGLE~WE~ARE~LOOKINGI~FOR~}
$$

COMPLEMENT:

$$
\frac{\pi}{7}+\beta=\frac{\pi}{2} \Rightarrow \beta=\frac{\pi}{2}-\frac{\pi}{7}=\frac{7 \pi}{14}-\frac{2 \pi}{14}=\frac{5 \pi}{14} \beta=\frac{5 \pi}{14}
$$

SUPPLEMENT:

$$
\begin{aligned}
& \frac{\pi}{7}+\beta=\pi \Rightarrow \beta=\pi-\frac{\pi}{7}=\frac{7 \pi}{7}-\frac{\pi}{7}=\frac{6 \pi}{7} \quad \beta=\frac{6 \pi}{7} \\
& \text { Checkpoint: Lecture 25, problem } 2
\end{aligned}
$$

Degree Measure

Another way to measure angles is in terms of degrees, denoted by ${ }^{\circ}$.

$$
1 \text { counterclockwise revolution }=360^{\circ}
$$

NOTE:

$$
1 \text { revolution }=360^{\circ}=2 \pi \mathrm{rad}
$$

$$
\Longrightarrow \quad 180^{\circ}=\pi \mathrm{rad} \quad\left[180^{\circ}=\pi R^{2} A D\right] \frac{1}{\pi}
$$

L25-7

Conversions between Radians and Degrees THIS FRACTION REDUCES TO 1 !

ex. Convert each angle in degrees to radians.

1) $60^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{60 \pi}{180}=\frac{\pi}{3}$
2) $150^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{150 \pi}{180}=\frac{5 \pi}{6}$
ex. Convert each angle in radians to degrees.
3) $\frac{\pi}{6} \cdot \frac{180^{\circ}}{\pi}=\frac{\# 180^{\circ}}{6 \pi}=\frac{180^{\circ}}{6}=30^{\circ}$
4) $-\frac{3 \pi}{4} \cdot \frac{180^{\circ}}{\pi}=-\frac{3 \pi\left(180^{\circ}\right)}{4 \pi}=-135^{\circ}$

Checkpoint: Lecture 25, problem 3

"PERIMETER"

\downarrow
Arc Length $=$ PARTIAL CIRCUMFERENCE ARON ND
CIRCLE
For a circle of radius r, a central angle θ intercepts an arc of length s given by

EARLIER: $\theta=\frac{s}{r}$

$$
s=r \theta
$$

where θ is measured in radians.

$$
\begin{aligned}
s= & \text { ARC LENGTH } \\
r= & \text { RADIUS } \\
\theta= & A N G L E I N \\
& \text { RADIANS }^{2}
\end{aligned}
$$

ex. A circle has a radius of 6 inches. Find the length of the arc intercepted by a central angle of 120°.

$$
\begin{aligned}
& S=r \theta \\
& \text { \#WANT } \theta \text { IN RADIANS! } \\
& \theta=120^{\circ}\left(\frac{\pi}{180^{\circ}}\right) \\
& \theta=\frac{120 \pi}{180}=\frac{2 \pi}{3} \\
& S=6\left(\frac{2 \pi}{3}\right)=\frac{12 \pi}{3}=4 \pi / \sim C H E S
\end{aligned}
$$

Checkpoint: Lecture 25, problem 4

Area of a Sector

For a circle of radius r, the area A of a sector with central angle θ is given by

AREA OF A SECTOR:
where θ is measured in radians

ex. A sprinkler sprays water over a distance of 30 feet while rotating through an angle of 150°. What area of lawn receives water?

WANT θ in radians!

$$
\begin{aligned}
\theta & =150^{\circ}\left(\frac{\pi}{180^{\circ}}\right) \\
& =\frac{150 \pi}{180}=\frac{5 \pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2}\left(30^{2}\right)\left(\frac{5 \pi}{6}\right) \\
A & =\frac{30 \cdot 30 \cdot 5 \pi}{2 \cdot 6} \\
& =375 \pi \text { SQ. FT }
\end{aligned}
$$

Checkpoint: Lecture 25, problem 5

