Lecture 25: Section 4.1 Angles and Their Measure

Angle - initial side, terminal side, vertex

Standard position of an angle

Positive and negative angles

Coterminal angle

Central angle

Radians

Complementary and supplementary angles

Degree measure and radian measure

Arc length, s

Area of a sector

Linear speed

Angular speed

An **angle** is formed by rotating a ray around its endpoint. The starting position of the ray is the **initial side** of the angle, and the position after rotation is the **terminal side** of the angle. The endpoint of the ray is called the **vertex**.

An angle θ is said to be in **standard position** if its vertex is in the origin and its initial side coincides with the positive *x*-axis.

If the rotation is in the counterclockwise direction, the angle is **positive**; if the rotation is clockwise, the angle is **negative**.

Angles α and β are **coterminal angles** if they have the same initial and terminal sides.

A **central angle** is an angle whose vertex is at the center of a circle.

L25 - 3

Radian Measure

<u>**Def.</u>** One radian is a measure of the central angle that intercepts an <u>arc whose length is equal to</u> the radius. Algebraically, this means that</u>

NOTE: For the angle $\theta = 1$ revolution: The length of the arc (circumference) $s = 2\pi r$ Therefore, $\theta = \frac{s}{r} = \frac{2\pi r}{r} = 2\pi$. We have, 1 revolution $= 2\pi$ radians **NOTE:** If $0 \le \theta \le 2\pi$, the standard position of the angle θ in the Cartesian coordinate system is shown below:

NOTE: Given an angle θ , the coterminal angles to θ $(2\pi)n=2n\pi$ are J nis AN

 $\theta + 2n\pi$

NTEGER

where n is an integer.

<u>ex.</u> Find the angle with the smallest <u>positive</u> measure that is coterminal with $\theta = -\frac{21\pi}{4}$. $n=1: -\frac{21\pi}{4} + 2\pi = -\frac{21\pi}{4} + \frac{8\pi}{4} = -\frac{13\pi}{4} \qquad h=3: -\frac{21\pi}{4} + 2\pi(3) = -\frac{21\pi}{4} + \frac{24\pi}{4}$ <u>31</u> $n=2: -\frac{2}{4} + \frac{2}{4} + \frac{2}{4} (2) = -\frac{2}{4} + \frac{16\pi}{4} = -\frac{5\pi}{4}$

Checkpoint: Lecture 25, problem 1

<u>ex.</u> Find the complement and supplement of the angle $\theta = \frac{\pi}{7}$. LET $\beta = A_{J}GLE$ WE ARE LOOKING FOR COMPLEMENT: $\frac{\pi}{7} + \beta = \frac{\pi}{7} \implies \beta = \frac{\pi}{7} - \frac{\pi}{7} = \frac{2\pi}{14} - \frac{2\pi}{14} = \frac{5\pi}{14} \left(\beta = \frac{5\pi}{14} \right)$ SUPPLEMENT:

$$\frac{\pi}{2} + \beta = \pi \implies \beta = \pi - \frac{\pi}{2} = \frac{2\pi}{2} - \frac{\pi}{2} = \frac{6\pi}{2} \qquad \beta = \frac{6\pi}{2}$$

Checkpoint: Lecture 25, problem 2

Degree Measure

Another way to measure angles is in terms of **degrees**, denoted by °.

1 counterclockwise revolution = 360°

Conversions between Radians and Degrees

<u>ex.</u> Convert each angle in degrees to radians.

1)
$$60^{\circ}$$
. $\frac{\pi}{180^{\circ}} = \frac{60\pi}{180} = \frac{\pi}{3}$

2)
$$150^{\circ}$$
. $\frac{\pi}{180^{\circ}} = \frac{150\pi}{180} = \frac{5\pi}{6}$

<u>ex.</u> Convert each angle in radians to degrees.

1)
$$\frac{\pi}{6} \cdot \frac{180^{\circ}}{\pi} = \frac{\pi}{6\pi} = \frac{180^{\circ}}{6\pi} = \frac{180^{\circ}}{6} = 30^{\circ}$$

2)
$$-\frac{3\pi}{4} \cdot \frac{180^{\circ}}{\pi} = -\frac{3\pi}{4\pi} (180^{\circ}) = -135^{\circ}$$

Checkpoint: Lecture 25, problem 3

"PERIMETER" J Arc Length = PARTIAL CIRCUMFERENCE AROUND CIRCLE

For a circle of radius r, a central angle θ intercepts an EARLIER: 0= S arc of length s given by

$$s = r\theta$$

where θ is measured in radians.

<u>ex.</u> A circle has a radius of 6 inches. Find the length of the arc intercepted by a central angle of 120° .

Checkpoint: Lecture 25, problem 4

Area of a Sector

For a circle of radius r, the area A of a sector with central angle θ is given by $A=TTr^{2}$ $A=\frac{1}{2}r^{2}\theta$ AREAOF A SECTOR: where θ is measured in radians.

<u>ex.</u> A sprinkler sprays water over a distance of 30 feet while rotating through an angle of 150°. What area of lawn receives water?

Checkpoint: Lecture 25, problem 5

L25 - 10