Lecture 28: Section 4.5Graphs of Sine and Cosine Functions
Period of sine and cosine
Amplitude of sine and cosine
Horizontal translation - phase shiftVertical translations

THINK ABOUT THE UNIT CIRCLE
(The Graph of $y=\sin x$
Domain: $(-\infty, \infty)$ day x-value you want
Range: $[-1,1]$
Period: 2π (STARTS REPEATING THE CYCLE AFTER 2T)
The key points in one period:

$\substack{\pi / 2 \\ (0,1)}$	x	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$
$\substack{\frac{3 \pi}{2}}$					
$(0,-1)$					
$(-1,0)$					

The Graph of $y=\cos x$
Domain: $(-\infty, \infty)$ Any x-value you want!
Range: $[-1,1]$
Period: 2π
The key points in one period:

x	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$y=\cos x$	1	0	-1	0	1

Checkpoint: Lecture 28, problem 1

Amplitude for Functions $y=a \sin x$ and $y=a \cos x$

Def. The amplitude of $y=a \sin x$ and $y=$ $a \cos x$ represents half the distance between the maximum and minimum values of the function and is given by
Amplitude $=|a|$

NOTE:

1. If $|a|>1$, the curve is stretched vertically, and if $|a|<1$, the curve is shrunk vertically.
2. The range is $[-a, a]$.
3. $y=\sin (x)$
4. $y=\frac{1}{2} \sin (x)$
ex. Graph $y=\frac{1}{2} \sin x$
g (ut EACH
y-valuein half
AMP. $=\left|\frac{1}{2}\right|=\frac{1}{2}$
DOMAIN: $(-\infty, \infty)$
$R_{\text {ANGL: }}\left[-\frac{1}{2}, \frac{1}{2}\right]$

L28-4
multiply
EAch y-Value
By 2
ex. Graph $y=-2 \cos x$

1. $y=\cos (x)$
2. $y=2 \cos (x)$
3. $y=-2 \cos (x)$

$O R: A M P=\frac{\begin{array}{c}\downarrow \\ 2-(-2) \\ 2\end{array}}{}=\frac{4}{2}=2$

DOMAIN: $(-\infty, \infty)$
RanGe: $[-2,2]$

Checkpoint: Lecture 28, problem 2

Period for Functions $y=a \sin (b x)$ and $y=a \cos (b x)$

The period of $y=a \sin (b x)$ and $y=a \cos (b x)$ is given by

$$
y=\sin x \text { has a normal }
$$

$$
\text { PERIODAS } \times \text { GOES FROM }
$$

$$
0 \text { TO } 2 \pi \text {. }
$$

$b_{x}=0$ £ NORMAL START
$x=0 \quad$ where b is a positive real number.

$$
\begin{aligned}
& b x=2 \pi \\
& x=\frac{2 \pi}{b}
\end{aligned} \quad \begin{aligned}
& \text { NORTMALEND }
\end{aligned} \quad=\frac{2 \pi}{1 / 3}=6 \pi
$$

1. If $0<b<1$, the period of $y=a \sin (b x)$ is greater than 2π and represents a horizontal stretching of the graph $y=a \sin x$.
2. If $b>1$, the period of $y=a \sin (b x)$ is less than 2π and represents a horizontal shrinking of the graph $y=a \sin x$.

$$
y=\sin (3 x) \quad P E R=\frac{2 \pi}{3}
$$

L28-6
ex. Find the amplitude and period of each function, and sketch its graph.

$$
\begin{aligned}
& A M P=141=4 \\
& P E R=\frac{2 \pi}{b}=\frac{2 \pi}{3}
\end{aligned}
$$

1) $y=4 \cos (3 x)$

$$
\begin{aligned}
& y=4 \cos (3 x) \\
& 3 x=0 \\
& x=0 \text { <NEW START } \\
& 3 x=2 \pi \\
& x=\frac{2 \pi}{3} \text { \& NEW END }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 \pi}{6}=\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
& A M P=|-2|=2 \\
& P E R 1 O D=\frac{2 \pi}{1 / 2}=\frac{2 \pi}{1} \cdot \frac{2}{1}=4 \pi
\end{aligned}
$$

2) $y=-2 \sin \left(\frac{1}{2} x\right)$

$$
\iota^{\frac{1}{2}}(0+4 \pi)=2 \pi
$$

NEW START :

$$
\begin{aligned}
\frac{1}{2} x & =0 \\
x & =0
\end{aligned}
$$

NEW END:

$$
\begin{aligned}
\frac{1}{2} x & =2 \pi \\
x & =4 \pi
\end{aligned}
$$

x	0	π	2π	3π	4π
y	0	-2	0	2	0
0	1	0	-1	0	
y					
y-VALUES FOR $y=\sin (x)$					

Checkpoint: Lecture 28, problem 3

Horizontal Translations \approx PHASE SHIFT

	$y=a \sin (b x)$	$y=a \sin (b x-c)$
Amplitude	$A=\|a\|$	$A=\|a\|$
Period	$P=\frac{2 \pi}{b}$	$P=\frac{2 \pi}{b}$
One cycle	$\begin{gathered} 0 \leq b x \leq 2 \pi \\ 0 \leq x \leq \frac{2 \pi}{b} \end{gathered}$	$\begin{aligned} & 0 \leq b x-c \leq 2 \pi \\ & \frac{c}{b} \leq x \leq \frac{2 \pi}{b}+\frac{c}{b} \\ & \text { NENSTART } \end{aligned}$

NOTE: The graph of $y=a \sin (b x)$ is shifted by END $\frac{c}{b}$ units to get the graph of $y=a \sin (b x-c)$. The number $\frac{c}{b}$ is called the phase shift.
ex. Find the amplitude, period and phase shift of each function, and sketch its graph.

$$
\begin{aligned}
\text { AMP }=\left|\frac{3}{2}\right|=\frac{3}{2} \quad \text { PERIOD }=\frac{2 \pi}{b}=\frac{2 \pi}{2}=\pi & \text { PS. }
\end{aligned}=\frac{c}{b} .
$$

NEW START:

NEW END:

$$
2 x-\frac{\pi}{2}=2 \pi
$$

$$
2 x=\frac{4 \pi}{2}+\frac{\pi}{2}
$$

$$
\begin{array}{lll}
0 & 0 & 1 \\
& & \frac{1}{2}\left(\frac{5 \pi}{4}+\frac{3 \pi}{4}\right) \\
& =\frac{1}{2}\left(\frac{8 \pi}{4}\right) \\
& =\pi
\end{array}
$$

$$
2 x=\frac{5 \pi}{2} \Rightarrow x=\frac{5 \pi}{4}
$$

$$
A M P=\left|\frac{3}{4}\right|=\frac{3}{4} \quad \text { PERIOD }=\frac{2 \pi}{2}=\pi
$$

2) $\begin{aligned} y=\frac{3}{4} \cos \left(2 x+\frac{2 \pi}{3}\right)^{\text {PHASESHIFT }=\frac{c}{b}} & =\frac{-\frac{2 \pi}{3}}{2} \\ & =-\frac{2 \pi}{3} \cdot \frac{1}{2}=-\frac{\pi}{3}\end{aligned}$

NEWSTART: NEL END:

$$
\begin{array}{rl}
2 x+\frac{2 \pi}{3}=0 & 2 x+\frac{2 \pi}{3}=2 \pi \\
2 x=-\frac{2 \pi}{3} & 2 x=\frac{6 \pi}{3}-\frac{2 \pi}{3} \\
x=\frac{-\pi}{3} & 2 x=\frac{4 \pi}{3} \\
x & =\frac{4 \pi}{3} \cdot \frac{1}{2}=\frac{2 \pi}{3}
\end{array}
$$

x	$-\frac{\pi}{3}$	$-\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{5 \pi}{12}$	$\frac{2 \pi}{3}$
y	$\frac{3}{4}$	0	$-\frac{3}{4}$	0	$\frac{3}{4}$

$10-101$

$$
\frac{1}{2}\left(-\frac{\pi}{3}+\frac{2 \pi}{3}\right)=\frac{1}{2}\left(\frac{\pi}{3}\right)=\frac{\pi}{6}
$$

$$
\frac{1}{2}\left(-\frac{\pi}{3}+\frac{\pi}{6}\right)=\frac{1}{2}\left(-\frac{2 \pi}{6}+\frac{\pi}{6}\right)
$$

L28-11

$$
=\frac{1}{2}\left(\frac{-\pi}{6}\right)=\frac{-\pi}{12}
$$

$$
\begin{aligned}
\frac{1}{2}\left(\frac{\pi}{6}+\frac{2 \pi}{3}\right) & =\frac{1}{2}\left(\frac{\pi}{6}+\frac{4 \pi}{6}\right) \\
& =\frac{1}{2}\left(\frac{5 \pi}{6}\right) \\
& =\frac{5 \pi}{12}
\end{aligned}
$$

$$
A M P .=\left|\frac{3}{2}\right|=\frac{3}{2} \quad \text { PERIOD }=\frac{2 \pi}{b}=\frac{2 \pi}{1 / 2}=2 \pi\left(\frac{2}{1}\right)=4 \pi
$$

Vertical Translations
PHASE SHIFT $=\frac{c}{b}=\frac{-\pi / 2}{1 / 2}=-\frac{\pi}{2} \cdot \frac{2}{1}=-\pi$
ex. Find the amplitude, period and phase shift of $y=1+\frac{3}{2} \sin \left(\frac{x}{2}+\frac{\pi}{2}\right)$, and sketch its graph.

1. GRAPH $y=\frac{3}{2} \sin \left(\frac{x}{2}+\frac{\pi}{2}\right)$
2. SHIFT $y=\frac{3}{2} \sin \left(\frac{x}{2}+\frac{\pi}{2}\right)$

UP I TO GET

$$
y=1+\frac{3}{2} \sin \left(\frac{x}{2}+\frac{\pi}{2}\right)
$$

NEW Start:

$$
\begin{aligned}
\frac{x}{2}+\frac{\pi}{2} & =0 \\
x & =-\pi
\end{aligned}
$$

x	$-\pi$	0	π	2π	3π
y	0	$\frac{3}{2}$	0	$-\frac{3}{2}$	0
	0	$\frac{1}{2} 28-12$	0	-1	0

NEW END:

$$
\begin{array}{ll}
\frac{x}{2}+\frac{\pi}{2}=2 \pi & \frac{1}{2}(3 \pi+(-\pi))=\frac{1}{2}(2 \pi)=\pi \\
\frac{x}{2}=\frac{4 \pi}{2}-\frac{\pi}{2} \Rightarrow \frac{x}{2}=\frac{3 \pi}{2} \Rightarrow x=3 \pi & \frac{1}{2}(-\pi+\pi)=0
\end{array}
$$

ex. As a wave passes by an offshore piling, the height of the water is modeled by the function

$$
h(t)=3 \cos \left(\frac{\pi}{10} t\right)
$$

where $h(t)$ is the height in feet above mean sea level at time t seconds.

1) Find the period of the wave.

$$
\text { PERIOD }=\frac{2 \pi}{\pi / 10}=\frac{2 \pi}{1} \cdot \frac{10}{\pi}=20 \text { SECONDS }
$$

2) Find the wave height, that is, the vertical distance between the trough and the crest of the wave.

Find amplitude
 AND DOUbLE IT

$$
\begin{aligned}
\operatorname{AmP}= & |3|=3 \\
& \Rightarrow 2(3)=6 \mathrm{FT} .
\end{aligned}
$$

