Lecture 28: Section 4.5 Graphs of Sine and Cosine Functions

Period of sine and cosine

Amplitude of sine and cosine

Horizontal translation - phase shift

Vertical translations

THINK ABOUT THE UNIT CIRCLE
THINK ABOUT THE UNIT CIRCLE
The Graph of
$$y = \sin x$$

Domain: (- ∞ , ∞) $\overset{\checkmark}{}$ ANY X-VALUE YOU WANT
Range: [-1,1]

Period: 21T (STARTS REPEATING THE CYCLE AFTER 277)

The key points in one period:

The Graph of $y = \cos x$

Domain: (-0,0) ANY X-JALVE YOU WANT!

Range: [-1,1]

Period: 2π

The key points in one period:

Checkpoint: Lecture 28, problem 1

DOMAIN: (-00,00) RANNE: [-2,2]

Checkpoint: Lecture 28, problem 2

Period for Functions $y = a \sin(bx)$ and $y = a \cos(bx)$

The **period** of $y = a \sin(bx)$ and $y = a \cos(bx)$ is given by

 2π and represents a horizontal shrinking of the graph $y = a \sin x$.

 $Y = \sin(3x)$ $PER = \frac{2\pi}{3}$ $\frac{1}{2\pi}\pi, \quad \frac{\pi}{2\pi}$

<u>ex.</u> Find the amplitude and period of each function, AMP = |4| = 4and sketch its graph. $PER = \frac{2\pi}{h} = \frac{2\pi}{3}$ 1) $y = 4\cos(3x)$ 2113 モン π $-\pi$ $y = 4 \cos(3x)$ $\frac{0+\pi}{3} = \frac{\pi}{3} \cdot \frac{1}{2} = \frac{\pi}{6}$ $\begin{array}{c|c} 0 + \frac{2\pi}{3} &= \frac{2\pi}{3} \cdot \frac{1}{2} = \frac{2\pi}{6} \\ 1 &= \frac{\pi}{3} \\ \hline \pi_{13} & \pi_{12} & 2\pi_{13} \\ \hline -4 & 0 & 4 \end{array}$ 3x=0 ν π/ω X=O KNEW START 0_ $3x = 2\pi$ 0 X= ZT & NEW EJD 4.1=4 4.0=0 $=\frac{3\pi}{3}\cdot\frac{1}{2}$ $=\frac{3\pi}{6}=\frac{\pi}{7}$ L28 - 7

Checkpoint: Lecture 28, problem 3

	1	
	$y = a\sin(bx)$	$y = a\sin(bx - c)$
Amplitude	$A = \mathbf{q} $	A = a
Period	$P = \frac{2\pi}{b}$	$P = \frac{2\pi}{b}$
One cycle	$0 \le bx \le 2\pi$	$0 \le bx - c \le 2\pi$
	$0 \le x \le \frac{2\pi}{b}$	$\frac{c}{b} \le x \le \frac{2\pi}{b} + \frac{c}{b}$
NOTE: The graph of $y = a \sin(bx)$ is shifted by Ead		
$\frac{c}{b}$ units to get the graph of $y = a \sin(bx - c)$. The number $\frac{c}{b}$ is called the phase shift .		
6	_	MINUS
		しろく

Horizontal Translations SPHASE SHIFT

ex. Find the amplitude, period and phase shift of
each function, and sketch its graph.

$$AMP = \left|\frac{3}{2}\right| = \frac{3}{2} \qquad PE_{R,IOO} = \frac{2\pi}{b} = \frac{2\pi}{2} = \pi \qquad P.S. = \frac{C}{b}$$

$$= \frac{\pi}{2}$$

$$1) y = \frac{3}{2} \sin\left(2x - \frac{\pi}{2}\right) \qquad = \frac{\pi}{2} \cdot \frac{1}{4} = \frac{\pi}{4}$$

$$1) y = \frac{3}{2} \sin\left(2x - \frac{\pi}{2}\right) \qquad = \frac{\pi}{2} \cdot \frac{1}{4} = \frac{\pi}{4}$$

$$\frac{3\pi}{4} = \frac{\pi}{4} =$$

Amp=
$$|\frac{3}{4}| = \frac{3}{4}$$
 PERIOD = $\frac{2\pi}{2} = \pi$
PHASE SHIFT = $\frac{c}{b} = \frac{-\frac{2\pi}{3}}{\frac{2}{3}}$
2) $y = \frac{3}{4}\cos\left(2x + \frac{2\pi}{3}\right)$ $= -\frac{\pi}{3}$

NEW START: NEU END: $\frac{2x+2\pi}{3}=0$ $2x + \frac{2\pi}{3} = 2\pi$ $Zx = -Z\pi$ $\overline{3}$ $X = -\pi$ $\overline{3}$ 2x= 6T _ 2T 0 -1 ۱ 6 2x - 417 3 $\frac{1}{2}\left(-\frac{\pi}{3}+\frac{2\pi}{3}\right)=\frac{1}{2}\left(\frac{\pi}{3}\right)=\frac{\pi}{6}$ $X = \frac{4\pi}{3} = \frac{2\pi}{3}$ $\frac{1}{2}\left(-\frac{\pi}{3}+\frac{\pi}{6}\right) = \frac{1}{2}\left(-\frac{2\pi}{6}+\frac{\pi}{6}\right)$ Checkpoint: Lecture 28, problem 4 $\frac{1}{2}\left(\frac{-\pi}{6}\right) = \frac{-\pi}{12}$ L28 - 11 $\frac{1}{2}\left(\frac{\pi}{6}+\frac{2\pi}{3}\right)=\frac{1}{2}\left(\frac{\pi}{6}+\frac{4\pi}{6}\right)$ $=\frac{1}{2}\left(\frac{5\pi}{c}\right)$ = <u>ST</u> 12

$$A^{MP.} = \left|\frac{3}{2}\right| = \frac{3}{2} \qquad PEPIOD = \frac{2\pi}{b} = \frac{2\pi}{b_{L}} = 2\pi (\frac{2}{b}) = 4\pi$$
Vertical Translations
$$PHASE SHIFT = \frac{2}{b} = \frac{-\pi}{b_{L}} = \frac{\pi}{2} = -\pi$$

$$\frac{ex.}{b} = \frac{1}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right), \text{ and sketch its graph.}$$

$$I = \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right), \text{ and sketch its graph.}$$

$$I = \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$2 = SHIFT = \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$2 = SHIFT = \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2} \sin \left(\frac{x}{2} + \frac{\pi}{2}\right)$$

$$C = I + \frac{3}{2}$$

 $\frac{X}{2} = \frac{4\pi}{2} - \frac{\pi}{2} \Rightarrow \frac{X}{2} = \frac{3\pi}{2} \Rightarrow X = 3\pi$

 $\frac{1}{2}(-\pi +\pi) = 0$

 $\underline{\mathbf{ex.}}$ As a wave passes by an offshore piling, the height of the water is modeled by the function

$$h(t) = 3\cos\left(\frac{\pi}{10}t\right)$$

where h(t) is the height in feet above mean sea level at time t seconds.

1) Find the period of the wave. $PEPIOD = \frac{2\pi}{\pi} = \frac{2\pi}{I} \cdot \frac{10}{\pi} = \frac{20 \text{ seconds}}{100 \text{ seconds}}$

2) Find the wave height, that is, the vertical distance between the trough and the crest of the wave.

